第一次提交:完成了网关的单路485数据采集,还有以太网链接和MQTT配置,实现数据上报和命令下发,差一个断网储存

This commit is contained in:
Wang Beihong
2026-02-01 18:31:06 +08:00
commit b284cb4953
35 changed files with 4338 additions and 0 deletions

2
.clangd Normal file
View File

@@ -0,0 +1,2 @@
CompileFlags:
Remove: [-f*, -m*]

78
.gitignore vendored Normal file
View File

@@ -0,0 +1,78 @@
# macOS
.DS_Store
.AppleDouble
.LSOverride
# Directory metadata
.directory
# Temporary files
*~
*.swp
*.swo
*.bak
*.tmp
# Log files
*.log
# Build artifacts and directories
**/build/
build/
*.o
*.a
*.out
*.exe # For any host-side utilities compiled on Windows
# ESP-IDF specific build outputs
*.bin
*.elf
*.map
flasher_args.json # Generated in build directory
sdkconfig.old
sdkconfig
# ESP-IDF dependencies
# For older versions or manual component management
/components/.idf/
**/components/.idf/
# For modern ESP-IDF component manager
managed_components/
# If ESP-IDF tools are installed/referenced locally to the project
.espressif/
# CMake generated files
CMakeCache.txt
CMakeFiles/
cmake_install.cmake
install_manifest.txt
CTestTestfile.cmake
# Python environment files
*.pyc
*.pyo
*.pyd
__pycache__/
*.egg-info/
dist/
# Virtual environment folders
venv/
.venv/
env/
# Language Servers
.clangd/
.ccls-cache/
compile_commands.json
# Windows specific
Thumbs.db
ehthumbs.db
Desktop.ini
# User-specific configuration files
*.user
*.workspace # General workspace files, can be from various tools
*.suo # Visual Studio Solution User Options
*.sln.docstates # Visual Studio

23
.vscode/c_cpp_properties.json vendored Normal file
View File

@@ -0,0 +1,23 @@
{
"configurations": [
{
"name": "ESP-IDF",
"compilerPath": "${config:idf.toolsPath}/tools/xtensa-esp-elf/esp-14.2.0_20251107/xtensa-esp-elf/bin/xtensa-esp32-elf-gcc",
"compileCommands": "${config:idf.buildPath}/compile_commands.json",
"includePath": [
"${config:idf.espIdfPath}/components/**",
"${config:idf.espIdfPathWin}/components/**",
"${workspaceFolder}/**"
],
"browse": {
"path": [
"${config:idf.espIdfPath}/components",
"${config:idf.espIdfPathWin}/components",
"${workspaceFolder}"
],
"limitSymbolsToIncludedHeaders": true
}
}
],
"version": 4
}

15
.vscode/launch.json vendored Normal file
View File

@@ -0,0 +1,15 @@
{
"version": "0.2.0",
"configurations": [
{
"type": "gdbtarget",
"request": "attach",
"name": "Eclipse CDT GDB Adapter"
},
{
"type": "espidf",
"name": "Launch",
"request": "launch"
}
]
}

20
.vscode/settings.json vendored Normal file
View File

@@ -0,0 +1,20 @@
{
"C_Cpp.intelliSenseEngine": "default",
"idf.espIdfPath": "/home/beihong/esp/v5.5.2/esp-idf",
"idf.pythonInstallPath": "/usr/bin/python3",
"idf.openOcdConfigs": [
"board/esp32s3-builtin.cfg"
],
"idf.port": "/dev/ttyACM0",
"idf.toolsPath": "/home/beihong/esp/v5.5.2/esp-idf/tools",
"idf.customExtraVars": {
"IDF_TARGET": "esp32s3"
},
"clangd.path": "/home/beihong/esp/v5.5.2/esp-idf/tools/tools/esp-clang/esp-19.1.2_20250312/esp-clang/bin/clangd",
"clangd.arguments": [
"--background-index",
"--query-driver=**",
"--compile-commands-dir=/home/beihong/esp_projects/Distributed Collector Gateway/build"
],
"idf.flashType": "UART"
}

6
CMakeLists.txt Executable file
View File

@@ -0,0 +1,6 @@
# The following five lines of boilerplate have to be in your project's
# CMakeLists in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.16)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(Distributed Collector Gateway)

441
README.md Normal file
View File

@@ -0,0 +1,441 @@
# Distributed Collector Gateway - 使用说明
## 功能概述
本设备是一个分布式采集网关,支持通过 MQTT 远程控制 MODBUS RTU 轮询参数,并定期上报设备状态信息。
## SNTP 时间同步
设备内置 SNTPSimple Network Time Protocol时间同步功能在网络连接成功后会自动同步系统时间。
### 时间同步特性
- **自动同步**:获取 IP 地址后自动启动 SNTP 客户端
- **多服务器支持**:配置了中国地区多个 NTP 服务器
- `cn.pool.ntp.org` - 中国 NTP 服务器
- `ntp1.aliyun.com` - 阿里云 NTP 服务器
- `ntp.tencent.com` - 腾讯云 NTP 服务器
- **时区设置**自动设置为北京时间CST-8
- **超时保护**:等待时间同步最长 10 秒,超时后使用本地时间继续运行
### 时间同步状态
设备会在启动日志中显示时间同步状态:
```
I (xxxx) SNTP_ESP: 初始化SNTP服务
I (xxxx) SNTP_ESP: 时区设置为北京时间 (CST-8)
I (xxxx) SNTP_ESP: 当前时间: 1970-01-01 08:00:00 Thursday (同步前)
I (xxxx) SNTP_ESP: 时间同步成功: 2026-02-01 15:30:45 (同步后)
I (xxxx) SNTP_ESP: 时间同步完成
```
### 时间在系统中的应用
同步后的时间会在以下场景中使用:
1. **设备状态上报** - `update_time` 字段显示精确的同步时间
2. **数据采集记录** - 可扩展用于记录数据采集时间戳
3. **日志时间戳** - 方便调试和问题追踪
### 注意事项
- 需要网络连接正常才能进行时间同步
- 首次启动时,时间同步可能需要几秒钟
- 如果网络连接异常,设备会使用本地时间继续工作
- 时间同步完成后,系统时间会持续由 SNTP 守护进程维护
## 设备状态上报
### 上报主题
`CONFIG_MQTT_PUB_TOPIC` (在 `sdkconfig` 中配置)
### 上报类型
设备会定期上报以下类型的数据:
1. **设备状态**`message_type: "device_status"`
2. **MODBUS 采集数据**`function_code: 3`
### 设备状态上报格式
```json
{
"message_type": "device_status",
"mac_address": "D0:CF:13:1B:C3:94",
"ip_address": "192.168.1.100",
"chip_model": "ESP32-S3",
"idf_version": "v5.5.2-dirty",
"uptime": 16,
"uptime_desc": "16秒",
"free_heap": 312996,
"status": "online",
"status_desc": "在线",
"update_time": "2026-02-01 15:30:45",
"led1_state": 1,
"led1_desc": "常亮",
"led1_function": "网络状态灯",
"led2_state": 4,
"led2_desc": "心跳",
"led2_function": "通信状态灯",
"modbus_enabled": 1,
"modbus_enabled_desc": "启用",
"modbus_channel": 0,
"modbus_channel_desc": "通道0 (UART0)",
"modbus_slave_addr": 1,
"modbus_interval": 1000,
"heap_status": "充足"
}
```
### 字段说明
#### 基本信息
| 字段 | 类型 | 说明 |
|------|------|------|
| `message_type` | string | 消息类型:`"device_status"` |
| `mac_address` | string | 设备 WiFi MAC 地址(唯一标识) |
| `ip_address` | string | 设备 IP 地址 |
| `chip_model` | string | 芯片型号 |
| `idf_version` | string | ESP-IDF 版本 |
#### 运行状态
| 字段 | 类型 | 说明 |
|------|------|------|
| `uptime` | number | 设备运行时间(秒) |
| `uptime_desc` | string | 运行时间中文描述(如:"1天5小时30分" |
| `free_heap` | number | 剩余堆内存(字节) |
| `heap_status` | string | 内存状态:`"充足"` / `"一般"` / `"紧张"` |
| `status` | string | 设备状态:`"online"` |
| `status_desc` | string | 设备状态中文描述:`"在线"` |
| `update_time` | string | 状态更新时间YYYY-MM-DD HH:MM:SS通过 SNTP 同步) |
#### LED 状态
| 字段 | 类型 | 说明 |
|------|------|------|
| `led1_state` | number | LED1 状态0=关闭, 1=常亮, 2=慢闪, 3=快闪, 4=心跳 |
| `led1_desc` | string | LED1 状态中文描述 |
| `led1_function` | string | LED1 功能:`"网络状态灯"` |
| `led2_state` | number | LED2 状态:同 LED1 |
| `led2_desc` | string | LED2 状态中文描述 |
| `led2_function` | string | LED2 功能:`"通信状态灯"` |
#### MODBUS 轮询状态
| 字段 | 类型 | 说明 |
|------|------|------|
| `modbus_enabled` | number | MODBUS 轮询是否启用0=禁用, 1=启用) |
| `modbus_enabled_desc` | string | 轮询状态中文描述:`"启用"` / `"禁用"` / `"未配置"` |
| `modbus_channel` | number | 当前使用的 RS485 通道0 或 1 |
| `modbus_channel_desc` | string | 通道中文描述 |
| `modbus_slave_addr` | number | 当前轮询的从机地址 |
| `modbus_interval` | number | 当前轮询间隔(毫秒) |
### 中文提示字段说明
带有 `_desc` 后缀的字段是中文提示字段,设计用于:
- **直接显示在 Web 页面上**,无需额外转换
- **不会被程序解析**,仅用于展示
- **提升用户体验**,让状态更直观
Web 页面可以选择显示:
- 程序解析字段(如 `led1_state`)用于逻辑判断
- 中文描述字段(如 `led1_desc`)用于界面显示
### 上报时机
- MQTT 订阅成功后立即上报一次
- 之后每隔 10 秒上报一次(可在 main.c 中修改 `mqtt_start_device_status_task(10000)` 的参数)
---
## MODBUS 控制说明
本设备是一个分布式采集网关,支持通过 MQTT 远程控制 MODBUS RTU 轮询参数。
## MQTT 控制指令
### 控制主题
发布控制指令到订阅主题:`CONFIG_MQTT_SUB_TOPIC` (在 `sdkconfig` 中配置)
### 指令格式 (JSON)
```json
{
"command": "modbus_poll",
"channel": 0,
"slave_addr": 1,
"start_addr": 0,
"reg_count": 2,
"interval": 1000,
"enabled": true
}
```
### 参数说明
| 参数 | 类型 | 必填 | 说明 |
|------|------|------|------|
| `command` | string | 是 | 固定为 `"modbus_poll"` |
| `channel` | number | 是 | RS485 通道号 (0 或 1) |
| `slave_addr` | number | 是 | 从机地址 (1-247) |
| `start_addr` | number | 是 | 起始寄存器地址 (0-65535) |
| `reg_count` | number | 是 | 读取寄存器数量 (1-125) |
| `interval` | number | 是 | 轮询间隔(毫秒),最小 100ms |
| `enabled` | boolean | 否 | 是否启用轮询,默认 `true` |
## 使用示例
### 示例 1读取设备地址 1 的寄存器
```json
{
"command": "modbus_poll",
"channel": 0,
"slave_addr": 1,
"start_addr": 0,
"reg_count": 2,
"interval": 1000
}
```
设备会每 1 秒读取一次从机地址 1从寄存器 0 开始的 2 个寄存器。
### 示例 2读取设备地址 10 的寄存器
```json
{
"command": "modbus_poll",
"channel": 0,
"slave_addr": 10,
"start_addr": 0,
"reg_count": 5,
"interval": 2000
}
```
设备会每 2 秒读取一次从机地址 10从寄存器 0 开始的 5 个寄存器。
### 示例 3读取指定范围的寄存器
```json
{
"command": "modbus_poll",
"channel": 0,
"slave_addr": 1,
"start_addr": 10,
"reg_count": 4,
"interval": 500
}
```
设备会每 500ms 读取一次从机地址 1从寄存器 10 开始的 4 个寄存器(地址 10, 11, 12, 13
### 示例 4停止轮询
```json
{
"command": "modbus_poll",
"channel": 0,
"slave_addr": 1,
"start_addr": 0,
"reg_count": 2,
"interval": 1000,
"enabled": false
}
```
设置 `"enabled": false` 可以暂停轮询任务。
### 示例 5使用 RS485 通道 1
```json
{
"command": "modbus_poll",
"channel": 1,
"slave_addr": 5,
"start_addr": 0,
"reg_count": 10,
"interval": 1000
}
```
使用 RS485 通道 1 进行轮询。
## 数据上报
### 上报主题
`CONFIG_MQTT_PUB_TOPIC` (在 `sdkconfig` 中配置)
### 上报数据格式 (JSON)
```json
{
"channel": "RS485-1",
"slave_addr": 1,
"function_code": 3,
"status": "success",
"byte_count": 4,
"register_count": 2,
"registers": [
556,
998
]
}
```
### 字段说明
| 字段 | 类型 | 说明 |
|------|------|------|
| `channel` | string | RS485 通道名称 |
| `slave_addr` | number | 从机地址 |
| `function_code` | number | MODBUS 功能码(始终为 3 |
| `status` | string | 状态:`"success"``"exception"` |
| `byte_count` | number | 数据字节数 |
| `register_count` | number | 寄存器数量 |
| `registers` | array | 寄存器值数组 |
### 异常响应格式
```json
{
"channel": "RS485-1",
"slave_addr": 1,
"function_code": 131,
"status": "exception",
"exception_code": 2
}
```
| 字段 | 类型 | 说明 |
|------|------|------|
| `exception_code` | number | 异常码:<br>1 - 非法功能<br>2 - 非法数据地址<br>3 - 非法数据值<br>4 - 服务器设备故障 |
## 动态更新
每次发送 MQTT 控制指令都会立即更新轮询参数,无需重启设备。
### 更新流程
1. 发送新的控制指令
2. 设备接收并解析 JSON
3. 立即更新轮询配置
4. 下一次轮询使用新参数
## MQTT 控制指令
### 控制主题
发布控制指令到订阅主题:`CONFIG_MQTT_SUB_TOPIC` (在 `sdkconfig` 中配置)
### 指令格式 (JSON)
```json
{
"command": "modbus_poll",
"channel": 0,
"slave_addr": 1,
"start_addr": 0,
"reg_count": 2,
"interval": 1000,
"enabled": true
}
```
### 参数说明
| 参数 | 类型 | 必填 | 说明 |
|------|------|------|------|
| `command` | string | 是 | 固定为 `"modbus_poll"` |
| `channel` | number | 是 | RS485 通道号 (0 或 1) |
| `slave_addr` | number | 是 | 从机地址 (1-247) |
| `start_addr` | number | 是 | 起始寄存器地址 (0-65535) |
| `reg_count` | number | 是 | 读取寄存器数量 (1-125) |
| `interval` | number | 是 | 轮询间隔(毫秒),最小 100ms |
| `enabled` | boolean | 否 | 是否启用轮询,默认 `true` |
### 支持的指令类型
当前支持以下控制指令:
#### 1. MODBUS 轮询控制
```json
{
"command": "modbus_poll",
"channel": 0,
"slave_addr": 1,
"start_addr": 0,
"reg_count": 2,
"interval": 1000,
"enabled": true
}
```
#### 2. 设备状态上报间隔控制(可选扩展)
可通过修改 `main.c` 中的参数来调整状态上报间隔:
```c
mqtt_start_device_status_task(10000); // 10000ms = 10秒
```
或运行时调用 API
```c
mqtt_update_report_interval(5000); // 5秒
```
## 注意事项
1. **轮询间隔最小为 100ms**,设置更小的值会被拒绝
2. **寄存器数量最大为 125**MODBUS RTU 限制
3. **从机地址范围 1-247**0 为广播地址
4. **通道号只能是 0 或 1**
5. 首次发送指令后会自动启动轮询任务
## 使用 mosquitto_cli 测试
### 发送控制指令
```bash
mosquitto_pub -h <broker_ip> -p 1883 -t <sub_topic> -m '{
"command": "modbus_poll",
"channel": 0,
"slave_addr": 1,
"start_addr": 0,
"reg_count": 2,
"interval": 1000
}'
```
### 监听数据上报
```bash
mosquitto_sub -h <broker_ip> -p 1883 -t <pub_topic>
```
## 硬件连接
### RS485 通道 0 (UART0)
| 引脚 | GPIO | 功能 |
|------|------|------|
| RO (RX) | GPIO 41 | RS485 接收器输出 |
| DE/RE | GPIO 42 | 数据使能/接收器使能 |
| DI (TX) | GPIO 44 | RS485 驱动器输入 |
### RS485 通道 1 (UART2)
| 引脚 | GPIO | 功能 |
|------|------|------|
| RO (RX) | GPIO 43 | RS485 接收器输出 |
| DE/RE | GPIO 2 | 数据使能/接收器使能 |
| DI (TX) | GPIO 1 | RS485 驱动器输入 |

View File

@@ -0,0 +1,7 @@
idf_component_register(SRCS
"ETH_CH390H.c"
"esp_eth_mac_ch390.c"
"esp_eth_phy_ch390.c"
INCLUDE_DIRS "include"
REQUIRES esp_eth esp_netif driver esp_timer STATUS_LED
)

View File

@@ -0,0 +1,141 @@
/*
* 文件: ETH_CH390H.c
* 描述: CH390H SPI 以太网模块初始化与事件处理封装。
*
* 功能:
* - 初始化 SPI 总线并配置 CH390H 设备
* - 安装并启动 esp-eth 驱动
* - 注册以太网事件回调(连接/断开/启动/停止)和获取 IP 回调
*
* 用法:
* 1. 在 app_main() 中调用 eth_init() 完成初始化,例如:
* eth_init();
* 2. 如需自定义 GPIO/SPI 配置,可修改本文件顶部的宏定义。
* 3. 如需自定义事件处理,修改 eth_event_handler 或 got_ip_event_handler。
*
* 注意:
* - 本模块使用 esp_netif 和 esp_event调用前请确保没有重复初始化。
* - 调试时可通过调整 mac_config.rx_task_stack_size 或 SPI_CLOCK_MHZ 优化性能。
*/
#include "ETH_CH390H.h"
#include "STATUS_LED.h"
static const char *TAG = "eth_ch390h";
/* 事件处理函数
* 处理 esp-eth 发出的以太网状态事件:
* - ETHERNET_EVENT_CONNECTED : 已连接(物理链路/链路层可用)
* - ETHERNET_EVENT_DISCONNECTED : 断开(物理链路丢失)
* - ETHERNET_EVENT_START : 以太网驱动启动
* - ETHERNET_EVENT_STOP : 以太网驱动停止
* 参数:
* arg - 注册时传入的参数(当前未使用)
* event_base - 事件基ETH_EVENT
* event_id - 事件 id
* event_data - 事件相关数据(视事件而定)
*/
static void eth_event_handler(void *arg, esp_event_base_t event_base,
int32_t event_id, void *event_data)
{
switch (event_id)
{
case ETHERNET_EVENT_CONNECTED:
ESP_LOGI(TAG, "以太网连接成功");
status_led_set(1, 1); // LED1 常亮:物理连接正常
break;
case ETHERNET_EVENT_DISCONNECTED:
ESP_LOGI(TAG, "以太网断开连接");
status_led_blink_mode(1, 1); // LED1 快闪:网络断开
break;
case ETHERNET_EVENT_START:
ESP_LOGI(TAG, "以太网开始工作");
break;
case ETHERNET_EVENT_STOP:
ESP_LOGI(TAG, "以太网停止工作");
break;
default:
break;
}
}
/* 获取 IP 回调
* 当网口获取到 IPDHCP 或静态)时调用,打印分配到的 IP 信息。
* 参数同上event_data 可转换为 ip_event_got_ip_t* 来读取 ip 信息。
*/
static void got_ip_event_handler(void *arg, esp_event_base_t event_base,
int32_t event_id, void *event_data)
{
ip_event_got_ip_t *event = (ip_event_got_ip_t *)event_data;
ESP_LOGI(TAG, "获取到的IP: " IPSTR, IP2STR(&event->ip_info.ip));
status_led_set(1, 1); // LED1 常亮IP获取成功网络就绪
}
/* eth_init
* 初始化并启动 CH390H 以太网设备的封装函数:
* 1. 初始化网络接口与默认事件循环
* 2. 配置并初始化 SPI 总线(供 CH390H 使用)
* 3. 配置 CH390H 的 mac/phy并安装 esp-eth 驱动
* 4. 将 esp-netif 绑定到以太网驱动,并注册事件回调
* 5. 启动以太网驱动
*
* 注意:
* - 若需要修改引脚或 SPI 频率,可在文件顶部宏中调整
* - 可根据需要调整 mac_config、phy_config 中的参数以优化性能
*/
void eth_init(void)
{
esp_netif_init();
esp_event_loop_create_default();
esp_netif_config_t cfg = ESP_NETIF_DEFAULT_ETH();
esp_netif_t *eth_netif = esp_netif_new(&cfg);
/* 设置以太网设备在 DHCP/路由器中的主机名(需在启动前设置) */
esp_netif_set_hostname(eth_netif, "Distributed Collector Gateway");
gpio_install_isr_service(0);
spi_bus_config_t buscfg = {
.mosi_io_num = ETH_MOSI_GPIO,
.miso_io_num = ETH_MISO_GPIO,
.sclk_io_num = ETH_SCLK_GPIO,
.quadwp_io_num = -1,
.quadhd_io_num = -1,
};
ESP_ERROR_CHECK(spi_bus_initialize(SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
spi_device_interface_config_t spi_devcfg = {
.mode = 0,
.clock_speed_hz = SPI_CLOCK_MHZ * 1000 * 1000,
.spics_io_num = ETH_CS_GPIO,
.queue_size = 20,
};
eth_ch390_config_t ch390_config = ETH_CH390_DEFAULT_CONFIG(SPI_HOST, &spi_devcfg);
ch390_config.int_gpio_num = ETH_INT_GPIO;
eth_mac_config_t mac_config = ETH_MAC_DEFAULT_CONFIG();
mac_config.rx_task_stack_size = 4096;
esp_eth_mac_t *mac = esp_eth_mac_new_ch390(&ch390_config, &mac_config);
eth_phy_config_t phy_config = ETH_PHY_DEFAULT_CONFIG();
esp_eth_phy_t *phy = esp_eth_phy_new_ch390(&phy_config);
esp_eth_config_t eth_config = ETH_DEFAULT_CONFIG(mac, phy);
esp_eth_handle_t eth_handle = NULL;
ESP_ERROR_CHECK(esp_eth_driver_install(&eth_config, &eth_handle));
ESP_ERROR_CHECK(esp_netif_attach(eth_netif, esp_eth_new_netif_glue(eth_handle)));
esp_event_handler_register(ETH_EVENT, ESP_EVENT_ANY_ID, &eth_event_handler, NULL);
esp_event_handler_register(IP_EVENT, IP_EVENT_ETH_GOT_IP, &got_ip_event_handler, NULL);
ESP_ERROR_CHECK(esp_eth_start(eth_handle));
}

View File

@@ -0,0 +1,930 @@
/*
* SPDX-FileCopyrightText: 2024-2025 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*
* SPDX-FileContributor: 2024-2025 Sergey Kharenko
* SPDX-FileContributor: 2024-2025 Espressif Systems (Shanghai) CO LTD
*/
#include <string.h>
#include <stdlib.h>
#include <sys/cdefs.h>
#include "driver/gpio.h"
#include "driver/spi_master.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_check.h"
#include "esp_eth_driver.h"
#include "esp_timer.h"
#include "esp_system.h"
#include "esp_intr_alloc.h"
#include "esp_heap_caps.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "ch390.h"
#include "esp_eth_mac_ch390.h"
/** @note ----------------------- RX Pack Structure ---------------------------
* | 4 Bytes Frame Head | Data Area(pass to lwip) |
* | Head | Status | Length(Low) | Length(High) | ........ |
* | |
* | |
* | | Should be the value of RSR( @ref CH390_RSR). We use @ref RSR_ERR_MASK to determine
* | | whether the pack has error.
* | |-------------------------------------------------------------------------------------
* |
* | Depends on RCSEN bit( @ref RCSCSR_RCSEN) of RCSCSR( @ref CH390_RCSCSR)
* | - RCSEN = 0, the Head should always be 0x01
* | - RCSEN = 1, bit 7:2 of the Head is the same as that of RCSCSR;
* | This will affect the determination of the validity of the packet. Therefore,
* | we provide discriminant masks for both cases.
* | - RCSEN = 0 ---> @ref CH390_PKT_ERR
* | - RCSEN = 1 ---> @ref CH390_PKT_ERR_WITH_RCSEN
* |----------------------------------------------------------------------------------------------
*/
static const char *TAG = "ch390.mac";
#define CH390_SPI_LOCK_TIMEOUT_MS (50)
#define CH390_MAC_TX_WAIT_TIMEOUT_US (1000)
#define CH390_PHY_OPERATION_TIMEOUT_US (1000)
typedef struct {
uint8_t flag;
uint8_t status;
uint8_t length_low;
uint8_t length_high;
} ch390_rx_header_t;
typedef struct {
spi_device_handle_t hdl;
SemaphoreHandle_t lock;
} eth_spi_info_t;
typedef struct {
void *ctx;
void *(*init)(const void *spi_config);
esp_err_t (*deinit)(void *spi_ctx);
esp_err_t (*read)(void *spi_ctx, uint32_t cmd, uint32_t addr, void *data, uint32_t data_len);
esp_err_t (*write)(void *spi_ctx, uint32_t cmd, uint32_t addr, const void *data, uint32_t data_len);
} eth_spi_custom_driver_t;
typedef struct {
esp_eth_mac_t parent;
esp_eth_mediator_t *eth;
eth_spi_custom_driver_t spi;
TaskHandle_t rx_task_hdl;
uint32_t sw_reset_timeout_ms;
int int_gpio_num;
esp_timer_handle_t poll_timer;
uint32_t poll_period_ms;
uint8_t addr[ETH_ADDR_LEN];
bool flow_ctrl_enabled;
uint8_t *rx_buffer;
uint32_t rx_len;
} emac_ch390_t;
static inline bool CH390_SPI_LOCK(eth_spi_info_t *spi)
{
return xSemaphoreTake(spi->lock, pdMS_TO_TICKS(CH390_SPI_LOCK_TIMEOUT_MS)) == pdTRUE;
}
static inline bool CH390_SPI_UNLOCK(eth_spi_info_t *spi)
{
return xSemaphoreGive(spi->lock) == pdTRUE;
}
static void *CH390_SPI_INIT(const void *spi_config)
{
void *ret = NULL;
eth_ch390_config_t *ch390_config = (eth_ch390_config_t *)spi_config;
eth_spi_info_t *spi = calloc(1, sizeof(eth_spi_info_t));
ESP_GOTO_ON_FALSE(spi, NULL, err, TAG, "no memory for SPI context data");
/* SPI device init */
spi_device_interface_config_t spi_devcfg;
spi_devcfg = *(ch390_config->spi_devcfg);
if (ch390_config->spi_devcfg->command_bits == 0 && ch390_config->spi_devcfg->address_bits == 0) {
/* configure default SPI frame format */
spi_devcfg.command_bits = 1;
spi_devcfg.address_bits = 7;
} else {
ESP_GOTO_ON_FALSE(ch390_config->spi_devcfg->command_bits == 1 && ch390_config->spi_devcfg->address_bits == 7,
NULL, err, TAG, "incorrect SPI frame format (command_bits/address_bits)");
}
ESP_GOTO_ON_FALSE(spi_bus_add_device(ch390_config->spi_host_id, &spi_devcfg, &spi->hdl) == ESP_OK,
NULL, err, TAG, "adding device to SPI host #%d failed", ch390_config->spi_host_id + 1);
/* create mutex */
spi->lock = xSemaphoreCreateMutex();
ESP_GOTO_ON_FALSE(spi->lock, NULL, err, TAG, "create lock failed");
ret = spi;
return ret;
err:
if (spi) {
if (spi->lock) {
vSemaphoreDelete(spi->lock);
}
free(spi);
}
return ret;
}
static esp_err_t CH390_SPI_DEINIT(void *spi_ctx)
{
esp_err_t ret = ESP_OK;
eth_spi_info_t *spi = (eth_spi_info_t *)spi_ctx;
spi_bus_remove_device(spi->hdl);
vSemaphoreDelete(spi->lock);
free(spi);
return ret;
}
static inline esp_err_t CH390_SPI_WRITE(void *spi_ctx, uint32_t cmd, uint32_t addr, const void *value, uint32_t len)
{
esp_err_t ret = ESP_OK;
eth_spi_info_t *spi = (eth_spi_info_t *)spi_ctx;
spi_transaction_t trans = {
.cmd = cmd,
.addr = addr,
.length = 8 * len,
.tx_buffer = value
};
if (CH390_SPI_LOCK(spi)) {
if (spi_device_polling_transmit(spi->hdl, &trans) != ESP_OK) {
ESP_LOGE(TAG, "%s(%d): spi transmit failed", __FUNCTION__, __LINE__);
ret = ESP_FAIL;
}
CH390_SPI_UNLOCK(spi);
} else {
ret = ESP_ERR_TIMEOUT;
}
return ret;
}
static inline esp_err_t CH390_SPI_READ(void *spi_ctx, uint32_t cmd, uint32_t addr, void *value, uint32_t len)
{
esp_err_t ret = ESP_OK;
eth_spi_info_t *spi = (eth_spi_info_t *)spi_ctx;
spi_transaction_t trans = {
.cmd = cmd,
.addr = addr,
.length = 8 * len,
.rx_buffer = value
};
if (CH390_SPI_LOCK(spi)) {
if (spi_device_polling_transmit(spi->hdl, &trans) != ESP_OK) {
ESP_LOGE(TAG, "%s(%d): spi transmit failed", __FUNCTION__, __LINE__);
ret = ESP_FAIL;
}
CH390_SPI_UNLOCK(spi);
} else {
ret = ESP_ERR_TIMEOUT;
}
return ret;
}
/**
* @brief write value to ch390 internal register
*/
static esp_err_t ch390_io_register_write(emac_ch390_t *emac, uint8_t reg_addr, uint8_t value)
{
return emac->spi.write(emac->spi.ctx, CH390_SPI_WR, reg_addr, &value, 1);
}
/**
* @brief read value from ch390 internal register
*/
static esp_err_t ch390_io_register_read(emac_ch390_t *emac, uint8_t reg_addr, uint8_t *value)
{
return emac->spi.read(emac->spi.ctx, CH390_SPI_RD, reg_addr, value, 1);
}
/**
* @brief write buffer to ch390 internal memory
*/
static esp_err_t ch390_io_memory_write(emac_ch390_t *emac, uint8_t *buffer, uint32_t len)
{
return emac->spi.write(emac->spi.ctx, CH390_SPI_WR, CH390_MWCMD, buffer, len);
}
/**
* @brief read buffer from ch390 internal memory
*/
static esp_err_t ch390_io_memory_read(emac_ch390_t *emac, uint8_t *buffer, uint32_t len)
{
return emac->spi.read(emac->spi.ctx, CH390_SPI_RD, CH390_MRCMD, buffer, len);
}
IRAM_ATTR static void ch390_isr_handler(void *arg)
{
emac_ch390_t *emac = (emac_ch390_t *)arg;
BaseType_t high_task_wakeup = pdFALSE;
/* notify ch390 task */
vTaskNotifyGiveFromISR(emac->rx_task_hdl, &high_task_wakeup);
if (high_task_wakeup != pdFALSE) {
portYIELD_FROM_ISR();
}
}
static void ch390_poll_timer(void *arg)
{
emac_ch390_t *emac = (emac_ch390_t *)arg;
xTaskNotifyGive(emac->rx_task_hdl);
}
/**
* @brief read mac address from internal registers
*/
static esp_err_t ch390_get_mac_addr(emac_ch390_t *emac)
{
esp_err_t ret = ESP_OK;
for (int i = 0; i < ETH_ADDR_LEN; i++) {
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_PAR + i, &emac->addr[i]), err, TAG, "read PAR failed");
}
return ESP_OK;
err:
return ret;
}
/**
* @brief set new mac address to internal registers
*/
static esp_err_t ch390_set_mac_addr(emac_ch390_t *emac)
{
esp_err_t ret = ESP_OK;
for (int i = 0; i < 6; i++) {
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_PAR + i, emac->addr[i]), err, TAG, "write PAR failed");
}
return ESP_OK;
err:
return ret;
}
/**
* @brief clear multicast hash table
*/
static esp_err_t ch390_clear_multicast_table(emac_ch390_t *emac)
{
esp_err_t ret = ESP_OK;
/* rx broadcast packet control by bit7 of MAC register 1DH */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_BCASTCR, 0x00), err, TAG, "write BCASTCR failed");
for (int i = 0; i < 7; i++) {
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_MAR + i, 0x00), err, TAG, "write MAR failed");
}
/* enable receive broadcast paclets */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_MAR + 7, 0x80), err, TAG, "write MAR failed");
return ESP_OK;
err:
return ret;
}
/**
* @brief software reset ch390 internal register
*/
static esp_err_t ch390_reset(emac_ch390_t *emac)
{
esp_err_t ret = ESP_OK;
/* software reset */
uint8_t ncr = NCR_RST;
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_NCR, ncr), err, TAG, "write NCR failed");
uint32_t to = 0;
for (to = 0; to < emac->sw_reset_timeout_ms / 10; to++) {
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_NCR, &ncr), err, TAG, "read NCR failed");
if (!(ncr & NCR_RST)) {
break;
}
vTaskDelay(pdMS_TO_TICKS(10));
}
ESP_GOTO_ON_FALSE(to < emac->sw_reset_timeout_ms / 10, ESP_ERR_TIMEOUT, err, TAG, "reset timeout");
/* For CH390H/D, phy should be power on after software reset !*/
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_GPR, 0x00), err, TAG, "write GPR failed");
/* mac and phy register won't be accessible within at least 1ms */
vTaskDelay(pdMS_TO_TICKS(10));
return ESP_OK;
err:
return ret;
}
/**
* @brief verify ch390 chip ID
*/
static esp_err_t ch390_verify_id(emac_ch390_t *emac)
{
esp_err_t ret = ESP_OK;
uint8_t id[2];
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_VIDL, &id[0]), err, TAG, "read VIDL failed");
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_VIDH, &id[1]), err, TAG, "read VIDH failed");
ESP_GOTO_ON_FALSE(0x1C == id[1] && 0x00 == id[0], ESP_ERR_INVALID_VERSION, err, TAG, "wrong Vendor ID");
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_PIDL, &id[0]), err, TAG, "read PIDL failed");
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_PIDH, &id[1]), err, TAG, "read PIDH failed");
ESP_GOTO_ON_FALSE(0x91 == id[1] && 0x51 == id[0], ESP_ERR_INVALID_VERSION, err, TAG, "wrong Product ID");
return ESP_OK;
err:
return ret;
}
/**
* @brief default setup for ch390 internal registers
*/
static esp_err_t ch390_setup_default(emac_ch390_t *emac)
{
esp_err_t ret = ESP_OK;
/* disable wakeup */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_NCR, 0x00), err, TAG, "write NCR failed");
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_WCR, 0x00), err, TAG, "write WCR failed");
/* stop transmitting, enable appending pad, crc for packets */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_TCR, 0x00), err, TAG, "write TCR failed");
/* stop receiving, no promiscuous mode, no runt packet(size < 64bytes), receive all multicast packets */
/* discard long packet(size > 1522bytes) and crc error packet, enable watchdog */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_RCR, RCR_DIS_CRC | RCR_ALL), err, TAG, "write RCR failed");
/* retry late collision packet, at most two transmit command can be issued before transmit complete */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_TCR2, TCR2_RLCP), err, TAG, "write TCR2 failed");
/* generate checksum for UDP, TCP and IPv4 packets */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_TCSCR, TCSCR_IPCSE | TCSCR_TCPCSE | TCSCR_UDPCSE), err, TAG, "write TCSCR failed");
/* disable check sum for receive packets */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_RCSCSR, 0x00), err, TAG, "write RCSCSR failed");
/* interrupt pin config: push-pull output, active high */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_INTCR, 0x00), err, TAG, "write INTCR failed");
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_INTCKCR, 0x00), err, TAG, "write INTCKCR failed");
/* set length limitation for rx packets to 1536(64*24)*/
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_RLENCR, RLENCR_RXLEN_EN | RLENCR_RXLEN_DEFAULT), err, TAG, "write RLENCR failed");
/* clear network status: wakeup event, tx complete */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END), err, TAG, "write NSR failed");
return ESP_OK;
err:
return ret;
}
static esp_err_t ch390_enable_flow_ctrl(emac_ch390_t *emac, bool enable)
{
esp_err_t ret = ESP_OK;
if (enable) {
/* send jam pattern (duration time = 1.15ms) when rx free space < 3k bytes */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_BPTR, 0x3F), err, TAG, "write BPTR failed");
/* flow control: high water threshold = 3k bytes, low water threshold = 8k bytes */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)), err, TAG, "write FCTR failed");
/* enable flow control */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_FCR, FCR_FLOW_ENABLE), err, TAG, "write FCR failed");
} else {
/* disable flow control */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_FCR, 0), err, TAG, "write FCR failed");
}
return ESP_OK;
err:
return ret;
}
static esp_err_t ch390_drop_frame(emac_ch390_t *emac, uint16_t length)
{
esp_err_t ret = ESP_OK;
uint8_t mrrh, mrrl;
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_MRRH, &mrrh), err, TAG, "read MDRAH failed");
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_MRRL, &mrrl), err, TAG, "read MDRAL failed");
uint16_t addr = mrrh << 8 | mrrl;
/* include 4B for header */
addr += length;
addr = addr < 0x4000 ? addr : addr - 0x3400;
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_MRRH, addr >> 8), err, TAG, "write MDRAH failed");
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_MRRL, addr & 0xFF), err, TAG, "write MDRAL failed");
err:
return ret;
}
/**
* @brief start ch390: enable interrupt and start receive
*/
static esp_err_t emac_ch390_start(esp_eth_mac_t *mac)
{
esp_err_t ret = ESP_OK;
emac_ch390_t *emac = __containerof(mac, emac_ch390_t, parent);
/* reset rx memory pointer */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_MPTRCR, MPTRCR_RST_RX), err, TAG, "write MPTRCR failed");
/* clear interrupt status */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_ISR, ISR_CLR_STATUS), err, TAG, "write ISR failed");
/* enable only Rx related interrupts as others are processed synchronously */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_IMR, IMR_PAR | IMR_PRI), err, TAG, "write IMR failed");
/* enable rx */
uint8_t rcr = 0;
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_RCR, &rcr), err, TAG, "read RCR failed");
rcr |= RCR_RXEN;
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_RCR, rcr), err, TAG, "write RCR failed");
return ESP_OK;
err:
return ret;
}
/**
* @brief stop ch390: disable interrupt and stop receive
*/
static esp_err_t emac_ch390_stop(esp_eth_mac_t *mac)
{
esp_err_t ret = ESP_OK;
emac_ch390_t *emac = __containerof(mac, emac_ch390_t, parent);
/* disable interrupt */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_IMR, 0x00), err, TAG, "write IMR failed");
/* disable rx */
uint8_t rcr = 0;
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_RCR, &rcr), err, TAG, "read RCR failed");
rcr &= ~RCR_RXEN;
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_RCR, rcr), err, TAG, "write RCR failed");
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_ch390_set_mediator(esp_eth_mac_t *mac, esp_eth_mediator_t *eth)
{
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_FALSE(eth, ESP_ERR_INVALID_ARG, err, TAG, "can't set mac's mediator to null");
emac_ch390_t *emac = __containerof(mac, emac_ch390_t, parent);
emac->eth = eth;
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_ch390_write_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t reg_value)
{
esp_err_t ret = ESP_OK;
emac_ch390_t *emac = __containerof(mac, emac_ch390_t, parent);
/* check if phy access is in progress */
uint8_t epcr = 0;
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_EPCR, &epcr), err, TAG, "read EPCR failed");
ESP_GOTO_ON_FALSE(!(epcr & EPCR_ERRE), ESP_ERR_INVALID_STATE, err, TAG, "phy is busy");
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_EPAR, (uint8_t)(CH390_PHY | phy_reg)), err, TAG, "write EPAR failed");
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_EPDRL, (uint8_t)(reg_value & 0xFF)), err, TAG, "write EPDRL failed");
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_EPDRH, (uint8_t)((reg_value >> 8) & 0xFF)), err, TAG, "write EPDRH failed");
/* select PHY and select write operation */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_EPCR, EPCR_EPOS | EPCR_ERPRW), err, TAG, "write EPCR failed");
/* polling the busy flag */
uint32_t to = 0;
do {
esp_rom_delay_us(100);
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_EPCR, &epcr), err, TAG, "read EPCR failed");
to += 100;
} while ((epcr & EPCR_ERRE) && to < CH390_PHY_OPERATION_TIMEOUT_US);
ESP_GOTO_ON_FALSE(!(epcr & EPCR_ERRE), ESP_ERR_TIMEOUT, err, TAG, "phy is busy");
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_ch390_read_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t *reg_value)
{
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_FALSE(reg_value, ESP_ERR_INVALID_ARG, err, TAG, "can't set reg_value to null");
emac_ch390_t *emac = __containerof(mac, emac_ch390_t, parent);
/* check if phy access is in progress */
uint8_t epcr = 0;
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_EPCR, &epcr), err, TAG, "read EPCR failed");
ESP_GOTO_ON_FALSE(!(epcr & 0x01), ESP_ERR_INVALID_STATE, err, TAG, "phy is busy");
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_EPAR, (uint8_t)(CH390_PHY | phy_reg)), err, TAG, "write EPAR failed");
/* Select PHY and select read operation */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_EPCR, 0x0C), err, TAG, "write EPCR failed");
/* polling the busy flag */
uint32_t to = 0;
do {
esp_rom_delay_us(100);
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_EPCR, &epcr), err, TAG, "read EPCR failed");
to += 100;
} while ((epcr & EPCR_ERRE) && to < CH390_PHY_OPERATION_TIMEOUT_US);
ESP_GOTO_ON_FALSE(!(epcr & EPCR_ERRE), ESP_ERR_TIMEOUT, err, TAG, "phy is busy");
uint8_t value_h = 0;
uint8_t value_l = 0;
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_EPDRH, &value_h), err, TAG, "read EPDRH failed");
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_EPDRL, &value_l), err, TAG, "read EPDRL failed");
*reg_value = (value_h << 8) | value_l;
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_ch390_set_addr(esp_eth_mac_t *mac, uint8_t *addr)
{
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_FALSE(addr, ESP_ERR_INVALID_ARG, err, TAG, "can't set mac addr to null");
emac_ch390_t *emac = __containerof(mac, emac_ch390_t, parent);
memcpy(emac->addr, addr, 6);
ESP_GOTO_ON_ERROR(ch390_set_mac_addr(emac), err, TAG, "set mac address failed");
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_ch390_get_addr(esp_eth_mac_t *mac, uint8_t *addr)
{
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_FALSE(addr, ESP_ERR_INVALID_ARG, err, TAG, "can't set mac addr to null");
emac_ch390_t *emac = __containerof(mac, emac_ch390_t, parent);
memcpy(addr, emac->addr, 6);
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_ch390_set_link(esp_eth_mac_t *mac, eth_link_t link)
{
esp_err_t ret = ESP_OK;
emac_ch390_t *emac = __containerof(mac, emac_ch390_t, parent);
switch (link) {
case ETH_LINK_UP:
ESP_GOTO_ON_ERROR(mac->start(mac), err, TAG, "ch390 start failed");
if (emac->poll_timer) {
ESP_GOTO_ON_ERROR(esp_timer_start_periodic(emac->poll_timer, emac->poll_period_ms * 1000),
err, TAG, "start poll timer failed");
}
break;
case ETH_LINK_DOWN:
ESP_GOTO_ON_ERROR(mac->stop(mac), err, TAG, "ch390 stop failed");
if (emac->poll_timer) {
ESP_GOTO_ON_ERROR(esp_timer_stop(emac->poll_timer),
err, TAG, "stop poll timer failed");
}
break;
default:
ESP_GOTO_ON_FALSE(false, ESP_ERR_INVALID_ARG, err, TAG, "unknown link status");
break;
}
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_ch390_set_speed(esp_eth_mac_t *mac, eth_speed_t speed)
{
esp_err_t ret = ESP_OK;
switch (speed) {
case ETH_SPEED_10M:
ESP_LOGD(TAG, "working in 10Mbps");
break;
case ETH_SPEED_100M:
ESP_LOGD(TAG, "working in 100Mbps");
break;
default:
ESP_GOTO_ON_FALSE(false, ESP_ERR_INVALID_ARG, err, TAG, "unknown speed");
break;
}
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_ch390_set_duplex(esp_eth_mac_t *mac, eth_duplex_t duplex)
{
esp_err_t ret = ESP_OK;
switch (duplex) {
case ETH_DUPLEX_HALF:
ESP_LOGD(TAG, "working in half duplex");
break;
case ETH_DUPLEX_FULL:
ESP_LOGD(TAG, "working in full duplex");
break;
default:
ESP_GOTO_ON_FALSE(false, ESP_ERR_INVALID_ARG, err, TAG, "unknown duplex");
break;
}
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_ch390_set_promiscuous(esp_eth_mac_t *mac, bool enable)
{
esp_err_t ret = ESP_OK;
emac_ch390_t *emac = __containerof(mac, emac_ch390_t, parent);
uint8_t rcr = 0;
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_RCR, &rcr), err, TAG, "read RCR failed");
if (enable) {
rcr |= RCR_PRMSC;
} else {
rcr &= ~RCR_PRMSC;
}
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_RCR, rcr), err, TAG, "write RCR failed");
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_ch390_enable_flow_ctrl(esp_eth_mac_t *mac, bool enable)
{
emac_ch390_t *emac = __containerof(mac, emac_ch390_t, parent);
emac->flow_ctrl_enabled = enable;
return ESP_OK;
}
static esp_err_t emac_ch390_set_peer_pause_ability(esp_eth_mac_t *mac, uint32_t ability)
{
emac_ch390_t *emac = __containerof(mac, emac_ch390_t, parent);
// we want to enable flow control, and peer does support pause function
// then configure the MAC layer to enable flow control feature
if (emac->flow_ctrl_enabled && ability) {
ch390_enable_flow_ctrl(emac, true);
}
else {
ch390_enable_flow_ctrl(emac, false);
ESP_LOGD(TAG, "Flow control not enabled for the link");
}
return ESP_OK;
}
static esp_err_t emac_ch390_transmit(esp_eth_mac_t *mac, uint8_t *buf, uint32_t length)
{
esp_err_t ret = ESP_OK;
emac_ch390_t *emac = __containerof(mac, emac_ch390_t, parent);
uint8_t tcr = 0;
ESP_GOTO_ON_FALSE(length <= ETH_MAX_PACKET_SIZE, ESP_ERR_INVALID_ARG, err,
TAG, "frame size is too big (actual %lu, maximum %u)",
length, ETH_MAX_PACKET_SIZE);
/* copy data to tx memory */
ESP_GOTO_ON_ERROR(ch390_io_memory_write(emac, buf, length), err, TAG,
"write memory failed");
/* Check if last transmit complete */
int64_t wait_time = esp_timer_get_time();
do {
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_TCR, &tcr), err, TAG,
"read TCR failed");
} while ((tcr & TCR_TXREQ) && ((esp_timer_get_time() - wait_time) < CH390_MAC_TX_WAIT_TIMEOUT_US));
if (tcr & TCR_TXREQ) {
ESP_LOGE(TAG, "last transmit still in progress, cannot send.");
return ESP_ERR_INVALID_STATE;
}
/* set tx length */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_TXPLL, length & 0xFF), err, TAG, "write TXPLL failed");
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_TXPLH, (length >> 8) & 0xFF), err, TAG, "write TXPLH failed");
/* issue tx polling command */
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_TCR, &tcr), err, TAG, "read TCR failed");
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_TCR, tcr | TCR_TXREQ), err, TAG, "write TCR failed");
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_ch390_receive(esp_eth_mac_t *mac, uint8_t *buf, uint32_t *length)
{
esp_err_t ret = ESP_OK;
emac_ch390_t *emac = __containerof(mac, emac_ch390_t, parent);
uint8_t ready;
/* dummy read, get the most updated data */
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_MRCMDX, &ready), err, TAG, "read MRCMDX failed");
ESP_GOTO_ON_ERROR(ch390_io_register_read(emac, CH390_MRCMDX, &ready), err, TAG, "read MRCMDX failed");
// if ready != 1 or 0 reset device
if (ready & CH390_PKT_ERR) {
emac_ch390_stop(mac);
esp_rom_delay_us(1000);
emac_ch390_start(mac);
ESP_LOGE(TAG, "PACK ERR");
return ESP_ERR_INVALID_RESPONSE;
} else {
__attribute__((aligned(4))) ch390_rx_header_t rx_header; // SPI driver needs the rx buffer 4 byte align
if (ready & CH390_PKT_RDY) {
ESP_GOTO_ON_ERROR(ch390_io_memory_read(emac, (uint8_t *) & (rx_header), sizeof(rx_header)),
err, TAG, "peek rx header failed");
*length = (rx_header.length_high << 8) + rx_header.length_low;
if (rx_header.status & RSR_ERR_MASK) {
ch390_drop_frame(emac, *length);
*length = 0;
return ESP_ERR_INVALID_RESPONSE;
} else if (*length > ETH_MAX_PACKET_SIZE) {
/* reset rx memory pointer */
ESP_GOTO_ON_ERROR(ch390_io_register_write(emac, CH390_MPTRCR, MPTRCR_RST_RX), err, TAG, "reset rx pointer failed");
return ESP_ERR_INVALID_RESPONSE;
} else {
ESP_GOTO_ON_ERROR(ch390_io_memory_read(emac, buf, *length), err, TAG, "read rx data failed");
*length -= ETH_CRC_LEN;
}
} else {
*length = 0;
}
return ESP_OK;
}
err:
*length = 0;
return ret;
}
static esp_err_t emac_ch390_init(esp_eth_mac_t *mac)
{
esp_err_t ret = ESP_OK;
emac_ch390_t *emac = __containerof(mac, emac_ch390_t, parent);
esp_eth_mediator_t *eth = emac->eth;
if (emac->int_gpio_num >= 0) {
esp_rom_gpio_pad_select_gpio(emac->int_gpio_num);
gpio_set_direction(emac->int_gpio_num, GPIO_MODE_INPUT);
gpio_set_pull_mode(emac->int_gpio_num, GPIO_PULLDOWN_ONLY);
gpio_set_intr_type(emac->int_gpio_num, GPIO_INTR_POSEDGE);
gpio_intr_enable(emac->int_gpio_num);
gpio_isr_handler_add(emac->int_gpio_num, ch390_isr_handler, emac);
}
ESP_GOTO_ON_ERROR(eth->on_state_changed(eth, ETH_STATE_LLINIT, NULL), err, TAG, "lowlevel init failed");
/* reset ch390 */
ESP_GOTO_ON_ERROR(ch390_reset(emac), err, TAG, "reset ch390 failed");
/* verify chip id */
ESP_GOTO_ON_ERROR(ch390_verify_id(emac), err, TAG, "verify chip ID failed");
/* default setup of internal registers */
ESP_GOTO_ON_ERROR(ch390_setup_default(emac), err, TAG, "ch390 default setup failed");
/* clear multicast hash table */
ESP_GOTO_ON_ERROR(ch390_clear_multicast_table(emac), err, TAG, "clear multicast table failed");
/* get emac address from eeprom */
ESP_GOTO_ON_ERROR(ch390_get_mac_addr(emac), err, TAG, "fetch ethernet mac address failed");
return ESP_OK;
err:
if (emac->int_gpio_num >= 0) {
gpio_isr_handler_remove(emac->int_gpio_num);
gpio_reset_pin(emac->int_gpio_num);
}
eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL);
return ret;
}
static esp_err_t emac_ch390_deinit(esp_eth_mac_t *mac)
{
emac_ch390_t *emac = __containerof(mac, emac_ch390_t, parent);
esp_eth_mediator_t *eth = emac->eth;
mac->stop(mac);
if (emac->int_gpio_num >= 0) {
gpio_isr_handler_remove(emac->int_gpio_num);
gpio_reset_pin(emac->int_gpio_num);
}
if (emac->poll_timer && esp_timer_is_active(emac->poll_timer)) {
esp_timer_stop(emac->poll_timer);
}
eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL);
return ESP_OK;
}
static void emac_ch390_task(void *arg)
{
emac_ch390_t *emac = (emac_ch390_t *)arg;
uint8_t status = 0;
uint8_t *buffer;
while (1) {
// check if the task receives any notification
if (emac->int_gpio_num >= 0) { // if in interrupt mode
if (ulTaskNotifyTake(pdTRUE, pdMS_TO_TICKS(1000)) == 0 && // if no notification ...
gpio_get_level(emac->int_gpio_num) == 0) { // ...and no interrupt asserted
continue; // -> just continue to check again
}
} else {
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
}
/* clear interrupt status */
ch390_io_register_read(emac, CH390_ISR, &status);
ch390_io_register_write(emac, CH390_ISR, status);
/* packet received */
if (status & ISR_PR) {
do {
if (emac->parent.receive(&emac->parent, emac->rx_buffer, &emac->rx_len) == ESP_OK) {
if (emac->rx_len == 0) {
break;
} else {
ESP_LOGD(TAG, "receive len=%lu", emac->rx_len);
/* allocate memory and check whether allocation failed */
buffer = malloc(emac->rx_len);
if (buffer == NULL) {
ESP_LOGE(TAG, "no memory for receive buffer");
continue;
}
/* pass the buffer to stack (e.g. TCP/IP layer) */
memcpy(buffer, emac->rx_buffer, emac->rx_len);
emac->eth->stack_input(emac->eth, buffer, emac->rx_len);
}
} else {
ESP_LOGE(TAG, "frame read from module failed");
break;
}
} while (1);
}
}
vTaskDelete(NULL);
}
static esp_err_t emac_ch390_del(esp_eth_mac_t *mac)
{
emac_ch390_t *emac = __containerof(mac, emac_ch390_t, parent);
if (emac->poll_timer) {
esp_timer_delete(emac->poll_timer);
}
vTaskDelete(emac->rx_task_hdl);
emac->spi.deinit(emac->spi.ctx);
heap_caps_free(emac->rx_buffer);
free(emac);
return ESP_OK;
}
esp_eth_mac_t *esp_eth_mac_new_ch390(const eth_ch390_config_t *ch390_config, const eth_mac_config_t *mac_config)
{
esp_eth_mac_t *ret = NULL;
emac_ch390_t *emac = NULL;
ESP_GOTO_ON_FALSE(ch390_config, NULL, err, TAG, "can't set ch390 specific config to null");
ESP_GOTO_ON_FALSE(mac_config, NULL, err, TAG, "can't set mac config to null");
emac = calloc(1, sizeof(emac_ch390_t));
ESP_GOTO_ON_FALSE(emac, NULL, err, TAG, "calloc emac failed");
/* ch390 receive is driven by interrupt or timer signal */
ESP_GOTO_ON_FALSE((ch390_config->int_gpio_num >= 0) != (ch390_config->poll_period_ms > 0), NULL, err, TAG, "invalid configuration argument combination");
/* bind methods and attributes */
emac->sw_reset_timeout_ms = mac_config->sw_reset_timeout_ms;
emac->int_gpio_num = ch390_config->int_gpio_num;
emac->poll_period_ms = ch390_config->poll_period_ms;
emac->parent.set_mediator = emac_ch390_set_mediator;
emac->parent.init = emac_ch390_init;
emac->parent.deinit = emac_ch390_deinit;
emac->parent.start = emac_ch390_start;
emac->parent.stop = emac_ch390_stop;
emac->parent.del = emac_ch390_del;
emac->parent.write_phy_reg = emac_ch390_write_phy_reg;
emac->parent.read_phy_reg = emac_ch390_read_phy_reg;
emac->parent.set_addr = emac_ch390_set_addr;
emac->parent.get_addr = emac_ch390_get_addr;
emac->parent.set_speed = emac_ch390_set_speed;
emac->parent.set_duplex = emac_ch390_set_duplex;
emac->parent.set_link = emac_ch390_set_link;
emac->parent.set_promiscuous = emac_ch390_set_promiscuous;
emac->parent.set_peer_pause_ability = emac_ch390_set_peer_pause_ability;
emac->parent.enable_flow_ctrl = emac_ch390_enable_flow_ctrl;
emac->parent.transmit = emac_ch390_transmit;
emac->parent.receive = emac_ch390_receive;
if (ch390_config->custom_spi_driver.init != NULL && ch390_config->custom_spi_driver.deinit != NULL
&& ch390_config->custom_spi_driver.read != NULL && ch390_config->custom_spi_driver.write != NULL) {
ESP_LOGD(TAG, "Using user's custom SPI Driver");
emac->spi.init = ch390_config->custom_spi_driver.init;
emac->spi.deinit = ch390_config->custom_spi_driver.deinit;
emac->spi.read = ch390_config->custom_spi_driver.read;
emac->spi.write = ch390_config->custom_spi_driver.write;
/* Custom SPI driver device init */
ESP_GOTO_ON_FALSE((emac->spi.ctx = emac->spi.init(ch390_config->custom_spi_driver.config)) != NULL, NULL, err, TAG, "SPI initialization failed");
} else {
ESP_LOGD(TAG, "Using default SPI Driver");
emac->spi.init = CH390_SPI_INIT;
emac->spi.deinit = CH390_SPI_DEINIT;
emac->spi.read = CH390_SPI_READ;
emac->spi.write = CH390_SPI_WRITE;
/* SPI device init */
ESP_GOTO_ON_FALSE((emac->spi.ctx = emac->spi.init(ch390_config)) != NULL, NULL, err, TAG, "SPI initialization failed");
}
/* create ch390 task */
BaseType_t core_num = tskNO_AFFINITY;
if (mac_config->flags & ETH_MAC_FLAG_PIN_TO_CORE) {
core_num = esp_cpu_get_core_id();
}
BaseType_t xReturned = xTaskCreatePinnedToCore(emac_ch390_task, "ch390_tsk", mac_config->rx_task_stack_size, emac,
mac_config->rx_task_prio, &emac->rx_task_hdl, core_num);
ESP_GOTO_ON_FALSE(xReturned == pdPASS, NULL, err, TAG, "create ch390 task failed");
emac->rx_buffer = heap_caps_malloc(ETH_MAX_PACKET_SIZE, MALLOC_CAP_DMA);
ESP_GOTO_ON_FALSE(emac->rx_buffer, NULL, err, TAG, "RX buffer allocation failed");
if (emac->int_gpio_num < 0) {
const esp_timer_create_args_t poll_timer_args = {
.callback = ch390_poll_timer,
.name = "emac_spi_poll_timer",
.arg = emac,
.skip_unhandled_events = true
};
ESP_GOTO_ON_FALSE(esp_timer_create(&poll_timer_args, &emac->poll_timer) == ESP_OK, NULL, err, TAG, "create poll timer failed");
}
return &(emac->parent);
err:
if (emac) {
if (emac->rx_task_hdl) {
vTaskDelete(emac->rx_task_hdl);
}
if (emac->spi.ctx) {
emac->spi.deinit(emac->spi.ctx);
}
heap_caps_free(emac->rx_buffer);
free(emac);
}
return ret;
}

View File

@@ -0,0 +1,157 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*
* SPDX-FileContributor: 2024 Sergey Kharenko
* SPDX-FileContributor: 2024 Espressif Systems (Shanghai) CO LTD
*/
#include <string.h>
#include <stdlib.h>
#include <sys/cdefs.h>
#include "esp_log.h"
#include "esp_check.h"
#include "esp_eth_phy_802_3.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_eth_phy_ch390.h"
#define CH390_INFO_OUI 0x1CDC64
#define CH390_INFO_MODEL 0x01
typedef struct {
phy_802_3_t phy_802_3;
} phy_ch390_t;
static const char *TAG = "ch390.phy";
static esp_err_t ch390_update_link_duplex_speed(phy_ch390_t *ch390)
{
esp_err_t ret = ESP_OK;
esp_eth_mediator_t *eth = ch390->phy_802_3.eth;
uint32_t addr = ch390->phy_802_3.addr;
eth_speed_t speed = ETH_SPEED_10M;
eth_duplex_t duplex = ETH_DUPLEX_HALF;
bmcr_reg_t bmcr;
bmsr_reg_t bmsr;
uint32_t peer_pause_ability = false;
anlpar_reg_t anlpar;
ESP_GOTO_ON_ERROR(eth->phy_reg_read(eth, addr, ETH_PHY_BMSR_REG_ADDR, &(bmsr.val)), err, TAG, "read BMSR failed");
ESP_GOTO_ON_ERROR(eth->phy_reg_read(eth, addr, ETH_PHY_BMSR_REG_ADDR, &(bmsr.val)), err, TAG, "read BMSR failed");
ESP_GOTO_ON_ERROR(eth->phy_reg_read(eth, addr, ETH_PHY_ANLPAR_REG_ADDR, &(anlpar.val)), err, TAG, "read ANLPAR failed");
eth_link_t link = bmsr.link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
/* check if link status changed */
if (ch390->phy_802_3.link_status != link) {
/* when link up, read negotiation result */
if (link == ETH_LINK_UP) {
ESP_GOTO_ON_ERROR(eth->phy_reg_read(eth, addr, ETH_PHY_BMCR_REG_ADDR, &(bmcr.val)), err, TAG, "read BMCR failed");
if (bmcr.speed_select) {
speed = ETH_SPEED_100M;
} else {
speed = ETH_SPEED_10M;
}
if (bmcr.duplex_mode) {
duplex = ETH_DUPLEX_FULL;
} else {
duplex = ETH_DUPLEX_HALF;
}
ESP_GOTO_ON_ERROR(eth->on_state_changed(eth, ETH_STATE_SPEED, (void *)speed), err, TAG, "change speed failed");
ESP_GOTO_ON_ERROR(eth->on_state_changed(eth, ETH_STATE_DUPLEX, (void *)duplex), err, TAG, "change duplex failed");
/* if we're in duplex mode, and peer has the flow control ability */
if (duplex == ETH_DUPLEX_FULL && anlpar.symmetric_pause) {
peer_pause_ability = 1;
} else {
peer_pause_ability = 0;
}
ESP_GOTO_ON_ERROR(eth->on_state_changed(eth, ETH_STATE_PAUSE, (void *)peer_pause_ability), err, TAG, "change pause ability failed");
}
ESP_GOTO_ON_ERROR(eth->on_state_changed(eth, ETH_STATE_LINK, (void *)link), err, TAG, "change link failed");
ch390->phy_802_3.link_status = link;
}
return ESP_OK;
err:
return ret;
}
static esp_err_t ch390_get_link(esp_eth_phy_t *phy)
{
esp_err_t ret = ESP_OK;
phy_ch390_t *ch390 = __containerof(esp_eth_phy_into_phy_802_3(phy), phy_ch390_t, phy_802_3);
/* Update information about link, speed, duplex */
ESP_GOTO_ON_ERROR(ch390_update_link_duplex_speed(ch390), err, TAG, "update link duplex speed failed");
return ESP_OK;
err:
return ret;
}
static esp_err_t ch390_autonego_ctrl(esp_eth_phy_t *phy, eth_phy_autoneg_cmd_t cmd, bool *autonego_en_stat)
{
esp_err_t ret = ESP_OK;
phy_802_3_t *phy_802_3 = esp_eth_phy_into_phy_802_3(phy);
esp_eth_mediator_t *eth = phy_802_3->eth;
if (cmd == ESP_ETH_PHY_AUTONEGO_EN) {
bmcr_reg_t bmcr;
ESP_GOTO_ON_ERROR(eth->phy_reg_read(eth, phy_802_3->addr, ETH_PHY_BMCR_REG_ADDR, &(bmcr.val)), err, TAG, "read BMCR failed");
ESP_GOTO_ON_FALSE(bmcr.en_loopback == 0, ESP_ERR_INVALID_STATE, err, TAG, "Auto-negotiation can't be enabled while in loopback operation");
}
return esp_eth_phy_802_3_autonego_ctrl(phy_802_3, cmd, autonego_en_stat);
err:
return ret;
}
static esp_err_t ch390_loopback(esp_eth_phy_t *phy, bool enable)
{
esp_err_t ret = ESP_OK;
phy_802_3_t *phy_802_3 = esp_eth_phy_into_phy_802_3(phy);
bool auto_nego_en = true;
ESP_GOTO_ON_ERROR(ch390_autonego_ctrl(phy, ESP_ETH_PHY_AUTONEGO_G_STAT, &auto_nego_en), err, TAG, "get status of autonegotiation failed");
ESP_GOTO_ON_FALSE(!(auto_nego_en && enable), ESP_ERR_INVALID_STATE, err, TAG,
"Unable to set loopback while auto-negotiation is enabled. Disable it to use loopback");
return esp_eth_phy_802_3_loopback(phy_802_3, enable);
err:
return ret;
}
static esp_err_t ch390_init(esp_eth_phy_t *phy)
{
esp_err_t ret = ESP_OK;
phy_802_3_t *phy_802_3 = esp_eth_phy_into_phy_802_3(phy);
/* Basic PHY init */
ESP_GOTO_ON_ERROR(esp_eth_phy_802_3_basic_phy_init(phy_802_3), err, TAG, "failed to init PHY");
/* Check PHY ID */
uint32_t oui;
uint8_t model;
ESP_GOTO_ON_ERROR(esp_eth_phy_802_3_read_oui(phy_802_3, &oui), err, TAG, "read OUI failed");
ESP_GOTO_ON_ERROR(esp_eth_phy_802_3_read_manufac_info(phy_802_3, &model, NULL), err, TAG, "read manufacturer's info failed");
ESP_GOTO_ON_FALSE(oui == CH390_INFO_OUI && model == CH390_INFO_MODEL, ESP_FAIL, err, TAG, "wrong chip ID");
return ESP_OK;
err:
return ret;
}
esp_eth_phy_t *esp_eth_phy_new_ch390(const eth_phy_config_t *config)
{
esp_eth_phy_t *ret = NULL;
phy_ch390_t *ch390 = calloc(1, sizeof(phy_ch390_t));
ESP_GOTO_ON_FALSE(ch390, NULL, err, TAG, "calloc ch390 failed");
ESP_GOTO_ON_FALSE(esp_eth_phy_802_3_obj_config_init(&ch390->phy_802_3, config) == ESP_OK,
NULL, err, TAG, "configuration initialization of PHY 802.3 failed");
// override functions which need to be customized for sake of ch390
ch390->phy_802_3.parent.init = ch390_init;
ch390->phy_802_3.parent.get_link = ch390_get_link;
ch390->phy_802_3.parent.autonego_ctrl = ch390_autonego_ctrl;
ch390->phy_802_3.parent.loopback = ch390_loopback;
return &ch390->phy_802_3.parent;
err:
if (ch390 != NULL) {
free(ch390);
}
return ret;
}

View File

@@ -0,0 +1,22 @@
#include <stdio.h>
#include "esp_eth.h"
#include "esp_eth_driver.h"
#include "esp_eth_mac_ch390.h"
#include "esp_eth_phy_ch390.h"
#include "esp_netif.h"
#include "esp_event.h"
#include "driver/spi_master.h"
#include "esp_log.h"
#include "driver/gpio.h"
#define ETH_CS_GPIO (GPIO_NUM_10)
#define ETH_MOSI_GPIO (GPIO_NUM_12)
#define ETH_MISO_GPIO (GPIO_NUM_13)
#define ETH_SCLK_GPIO (GPIO_NUM_11)
#define ETH_INT_GPIO (GPIO_NUM_14)
#define SPI_HOST SPI2_HOST
#define SPI_CLOCK_MHZ 10
void eth_init(void);

View File

@@ -0,0 +1,236 @@
/*
* SPDX-FileCopyrightText: 2024-2025 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*
* SPDX-FileContributor: 2023-2024 NanjingQinhengMicroelectronics CO LTD
* SPDX-FileContributor: 2024 Sergey Kharenko
* SPDX-FileContributor: 2024-2025 Espressif Systems (Shanghai) CO LTD
*/
#pragma once
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/********************************************************************
* Register definition
*/
#define CH390_NCR 0x00 // Network control reg
#define NCR_WAKEEN (1<<6) // Enable wakeup function
#define NCR_FDX (1<<3) // Duplex mode of the internal PHY
#define NCR_LBK_MAC (1<<1) // MAC loop-back
#define NCR_RST (1<<0) // Software reset
#define CH390_NSR 0x01 // Network status reg
#define NSR_SPEED (1<<7) // Speed of internal PHY
#define NSR_LINKST (1<<6) // Link status of internal PHY
#define NSR_WAKEST (1<<5) // Wakeup event status
#define NSR_TX2END (1<<3) // Tx packet B complete status
#define NSR_TX1END (1<<2) // Tx packet A complete status
#define NSR_RXOV (1<<1) // Rx fifo overflow
#define NSR_RXRDY (1<<0)
#define CH390_TCR 0x02 // Transmit control reg
#define TCR_TJDIS (1<<6) // Transmit jabber timer
#define TCR_PAD_DIS2 (1<<4) // PAD appends for packet B
#define TCR_CRC_DIS2 (1<<3) // CRC appends for packet B
#define TCR_PAD_DIS1 (1<<2) // PAD appends for packet A
#define TCR_CRC_DIS1 (1<<1) // CRC appends for packet A
#define TCR_TXREQ (1<<0) // Tx request
#define CH390_TSRA 0x03 // Transmit status reg A
#define CH390_TSRB 0x04 // Transmit status reg B
#define TSR_TJTO (1<<7) // Transmit jabber time out
#define TSR_LC (1<<6) // Loss of carrier
#define TSR_NC (1<<5) // No carrier
#define TSR_LCOL (1<<4) // Late collision
#define TSR_COL (1<<3) // Collision packet
#define TSR_EC (1<<2) // Excessive collision
#define CH390_RCR 0x05 // Receive control reg
#define RCR_DEFAULT 0x00 // Default settings
#define RCR_WTDIS (1<<6) // Disable 2048 bytes watch dog
#define RCR_DIS_CRC (1<<4) // Discard CRC error packet
#define RCR_ALL (1<<3) // Pass all multicast
#define RCR_RUNT (1<<2) // Pass runt packet
#define RCR_PRMSC (1<<1) // Promiscuous mode
#define RCR_RXEN (1<<0) // Enable RX
#define CH390_RSR 0x06 // Receive status reg
#define RSR_RF (1<<7) // Rnt frame
#define RSR_MF (1<<6) // Multicast frame
#define RSR_LCS (1<<5) // Late collision seen
#define RSR_RWTO (1<<4) // Receive watchdog time-out
#define RSR_PLE (1<<3) // Physical layer error
#define RSR_AE (1<<2) // Alignment error
#define RSR_CE (1<<1) // CRC error
#define RSR_FOE (1<<0) // FIFO overflow error
//Receive status error mask(default)
#define RSR_ERR_MASK (RSR_RF | RSR_LCS | RSR_RWTO | RSR_PLE | \
RSR_AE | RSR_CE | RSR_FOE)
#define CH390_ROCR 0x07 // Receive overflow count reg
#define CH390_BPTR 0x08 // Back pressure threshold reg
#define CH390_FCTR 0x09 // Flow control threshold reg
#define FCTR_HWOT(overflow_th) (( overflow_th & 0xf ) << 4)
#define FCTR_LWOT(overflow_th) ( overflow_th & 0xf )
#define CH390_FCR 0x0A // Transmit/Receive flow control reg
#define FCR_FLOW_ENABLE (0x39) // Enable Flow Control
#define CH390_EPCR 0x0B // EEPROM or PHY control reg
#define EPCR_REEP (1<<5) // Reload EEPROM
#define EPCR_WEP (1<<4) // Write EEPROM enable
#define EPCR_EPOS (1<<3) // EEPROM or PHY operation select
#define EPCR_ERPRR (1<<2) // EEPROM or PHY read command
#define EPCR_ERPRW (1<<1) // EEPROM or PHY write command
#define EPCR_ERRE (1<<0) // EEPROM or PHY access status
#define CH390_EPAR 0x0C // EEPROM or PHY address reg
#define CH390_EPDRL 0x0D // EEPROM or PHY low byte data reg
#define CH390_EPDRH 0x0E // EEPROM or PHY high byte data reg
#define CH390_WCR 0x0F // Wakeup control reg
#define WCR_LINKEN (1<<5) // Link status change wakeup
#define WCR_SAMPLEEN (1<<4) // Sample frame wakeup
#define WCR_MAGICEN (1<<3) // Magic packet wakeup
#define WCR_LINKST (1<<2) // Link status change event
#define WCR_SAMPLEST (1<<1) // Sample frame event
#define WCR_MAGICST (1<<0) // Magic packet event
#define CH390_PAR 0x10 // MAC address reg
#define CH390_MAR 0x16 // Multicast address reg
#define CH390_GPCR 0x1E // General purpose control reg
#define CH390_GPR 0x1F // General purpose reg
#define CH390_TRPAL 0x22 // Transmit read pointer low byte address reg
#define CH390_TRPAH 0x23 // Transmit read pointer high byte address reg
#define CH390_RWPAL 0x24 // Receive write pointer low byte address reg
#define CH390_RWPAH 0x25 // Receive write pointer high byte address reg
#define CH390_VIDL 0x28 // Vendor ID low byte reg
#define CH390_VIDH 0x29 // Vendor ID high byte reg
#define CH390_PIDL 0x2A // Product ID low byte reg
#define CH390_PIDH 0x2B // Product ID high byte reg
#define CH390_CHIPR 0x2C // Chip reversion reg
#define CH390_TCR2 0x2D // Transmit control reg II
#define TCR2_RLCP (1<<6) // Retry Late Collision Packet
#define CH390_ATCR 0x30 // Auto-Transmit control reg
#define ATCR_AUTO_TX (1<<7) // Auto-Transmit Control
#define CH390_TCSCR 0x31 // Transmit checksum and control reg
#define TCSCR_ALL 0x1F
#define TCSCR_IPv6TCPCSE (1<<4) // IPv6 TCP checksum generation
#define TCSCR_IPv6UDPCSE (1<<3) // IPv6 UDP checksum generation
#define TCSCR_UDPCSE (1<<2) // UDP checksum generation
#define TCSCR_TCPCSE (1<<1) // TCP checksum generation
#define TCSCR_IPCSE (1<<0) // IP checksum generation
#define CH390_RCSCSR 0x32 // Receive checksum and control reg
#define RCSCSR_UDPS (1<<7) // UDP checksum status
#define RCSCSR_TCPS (1<<6) // TCP checksum status
#define RCSCSR_IPS (1<<5) // IP checksum status
#define RCSCSR_UDPP (1<<4) // UDP packet of current received packet
#define RCSCSR_TCPP (1<<3) // TCP packet of current received packet
#define RCSCSR_IPP (1<<2) // IP packet of current received packet
#define RCSCSR_RCSEN (1<<1) // Receive checksum checking enable
#define RCSCSR_DCSE (1<<0) // Discard checksum error packet
#define CH390_MPAR 0x33 // MII PHY address reg
#define CH390_SBCR 0x38 // SPI bus control reg
#define CH390_INTCR 0x39 // INT pin control reg
#define INCR_TYPE_OD 0x02 // Open drain output
#define INCR_TYPE_PP 0x00 // Push pull output
#define INCR_POL_L 0x01 // Low level positive
#define INCR_POL_H 0x00 // High level positive
#define CH390_ALNCR 0x4A // SPI alignment error count reg
#define CH390_SCCR 0x50 // System clock control reg
#define CH390_RSCCR 0x51 // Recover system clock control reg
#define CH390_RLENCR 0x52 // Receive data pack length control reg
#define RLENCR_RXLEN_EN 0x80 // Enable RX data pack length filter
#define RLENCR_RXLEN_DEFAULT 0x18 // Default MAX length of RX data(div by 64)
#define CH390_BCASTCR 0x53 // Receive broadcast control reg
#define CH390_INTCKCR 0x54 // INT pin clock output control reg
#define CH390_MPTRCR 0x55 // Memory pointer control reg
#define MPTRCR_RST_TX (1<<1) // Reset TX Memory Pointer
#define MPTRCR_RST_RX (1<<0) // Reset RX Memory Pointer
#define CH390_MLEDCR 0x57 // More LED control reg
#define CH390_MRCMDX 0x70 // Memory read command without address increment reg
// Memory read command without data pre-fetch and address increment reg
#define CH390_MRCMDX1 0x71
#define CH390_MRCMD 0x72 // Memory data read command with address increment reg
#define CH390_MRRL 0x74 // Memory read low byte address reg
#define CH390_MRRH 0x75 // Memory read high byte address reg
#define CH390_MWCMDX 0x76 // Memory write command without address increment reg
#define CH390_MWCMD 0x78 // Memory write command
#define CH390_MWRL 0x7A // Memory write low byte address reg
#define CH390_MWRH 0x7B // Memory write high byte address reg
#define CH390_TXPLL 0x7C // Transmit pack low byte length reg
#define CH390_TXPLH 0x7D // Transmit pack high byte length reg
#define CH390_ISR 0x7E // Interrupt status reg
#define ISR_LNKCHG (1<<5) // Link status change
#define ISR_ROO (1<<3) // Receive overflow counter overflow
#define ISR_ROS (1<<2) // Receive overflow
#define ISR_PT (1<<1) // Packet transmitted
#define ISR_PR (1<<0) // Packet received
#define ISR_CLR_STATUS (ISR_LNKCHG | ISR_ROO | ISR_ROS | ISR_PT | ISR_PR)
#define CH390_IMR 0x7F // Interrupt mask reg
#define IMR_NONE 0x00 // Disable all interrupt
#define IMR_ALL 0xFF // Enable all interrupt
#define IMR_PAR (1<<7) // Pointer auto-return mode
#define IMR_LNKCHGI (1<<5) // Enable link status change interrupt
#define IMR_UDRUNI (1<<4) // Enable transmit under-run interrupt
#define IMR_ROOI (1<<3) // Enable receive overflow counter overflow interrupt
#define IMR_ROI (1<<2) // Enable receive overflow interrupt
#define IMR_PTI (1<<1) // Enable packet transmitted interrupt
#define IMR_PRI (1<<0) // Enable packet received interrupt
// SPI commands
#define OPC_REG_W 0x80 // Register Write
#define OPC_REG_R 0x00 // Register Read
#define OPC_MEM_DMY_R 0x70 // Memory Dummy Read
#define OPC_MEM_WRITE 0xF8 // Memory Write
#define OPC_MEM_READ 0x72 // Memory Read
#define CH390_SPI_RD 0
#define CH390_SPI_WR 1
// GPIO
#define CH390_GPIO1 0x02
#define CH390_GPIO2 0x04
#define CH390_GPIO3 0x08
// PHY registers
#define CH390_PHY 0x40
#define CH390_PHY_BMCR 0x00
#define CH390_PHY_BMSR 0x01
#define CH390_PHY_PHYID1 0x02
#define CH390_PHY_PHYID2 0x03
#define CH390_PHY_ANAR 0x04
#define CH390_PHY_ANLPAR 0x05
#define CH390_PHY_ANER 0x06
#define CH390_PHY_PAGE_SEL 0x1F
// Packet status
#define CH390_PKT_NONE 0x00 /* No packet received */
#define CH390_PKT_RDY 0x01 /* Packet ready to receive */
#define CH390_PKT_ERR 0xFE /* Un-stable states mask */
#define CH390_PKT_ERR_WITH_RCSEN 0xE2 /* Un-stable states mask when RCSEN = 1 */
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,62 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*
* SPDX-FileContributor: 2024 Sergey Kharenko
* SPDX-FileContributor: 2024 Espressif Systems (Shanghai) CO LTD
*/
#pragma once
#include "esp_eth_com.h"
#include "esp_eth_mac.h"
#include "esp_idf_version.h"
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 3, 0)
#include "esp_eth_mac_spi.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief CH390 specific configuration
*
*/
typedef struct {
int int_gpio_num; /*!< Interrupt GPIO number */
uint32_t poll_period_ms; /*!< Period in ms to poll rx status when interrupt mode is not used */
spi_host_device_t spi_host_id; /*!< SPI peripheral (this field is invalid when custom SPI driver is defined) */
spi_device_interface_config_t *spi_devcfg; /*!< SPI device configuration (this field is invalid when custom SPI driver is defined) */
eth_spi_custom_driver_config_t custom_spi_driver; /*!< Custom SPI driver definitions */
} eth_ch390_config_t;
/**
* @brief Default CH390 specific configuration
*
*/
#define ETH_CH390_DEFAULT_CONFIG(spi_host, spi_devcfg_p) \
{ \
.int_gpio_num = 4, \
.spi_host_id = spi_host, \
.spi_devcfg = spi_devcfg_p, \
.custom_spi_driver = ETH_DEFAULT_SPI, \
}
/**
* @brief Create CH390 Ethernet MAC instance
*
* @param ch390_config: CH390 specific configuration
* @param mac_config: Ethernet MAC configuration
*
* @return
* - instance: create MAC instance successfully
* - NULL: create MAC instance failed because some error occurred
*/
esp_eth_mac_t *esp_eth_mac_new_ch390(const eth_ch390_config_t *ch390_config, const eth_mac_config_t *mac_config);
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,32 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*
* SPDX-FileContributor: 2024 Sergey Kharenko
* SPDX-FileContributor: 2024 Espressif Systems (Shanghai) CO LTD
*/
#pragma once
#include "esp_eth_com.h"
#include "esp_eth_phy.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Create a PHY instance of CH390
*
* @param[in] config: configuration of PHY
*
* @return
* - instance: create PHY instance successfully
* - NULL: create PHY instance failed because some error occurred
*/
esp_eth_phy_t *esp_eth_phy_new_ch390(const eth_phy_config_t *config);
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,3 @@
idf_component_register(SRCS "MODBUS_ESP.c"
INCLUDE_DIRS "include"
REQUIRES driver RS-485-SP3485EEN)

View File

@@ -0,0 +1,416 @@
#include <stdio.h>
#include <string.h>
#include "MODBUS_ESP.h"
#include "esp_log.h"
#include "RS-485-SP3485EEN.h"
#define TAG "MODBUS_ESP"
// CRC-16表多项式0xA001
static const uint16_t crc16_table[256] = {
0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040
};
uint16_t modbus_crc16(const uint8_t *data, size_t len)
{
uint16_t crc = 0xFFFF;
for (size_t i = 0; i < len; i++) {
crc = (crc >> 8) ^ crc16_table[(crc ^ data[i]) & 0xFF];
}
return crc;
}
bool modbus_verify_crc(const uint8_t *data, size_t len)
{
if (len < 3) {
ESP_LOGE(TAG, "Frame too short for CRC verification");
return false;
}
// 计算除最后2字节外的CRC
uint16_t calculated_crc = modbus_crc16(data, len - 2);
// 获取帧中的CRC小端序
uint16_t frame_crc = ((uint16_t)data[len - 1] << 8) | data[len - 2];
if (calculated_crc != frame_crc) {
ESP_LOGE(TAG, "CRC mismatch: calculated=0x%04X, frame=0x%04X", calculated_crc, frame_crc);
return false;
}
return true;
}
bool modbus_build_read_holding_req(uint8_t slave_addr, uint16_t start_addr, uint16_t reg_count,
uint8_t *frame, size_t *frame_len)
{
if (frame == NULL || frame_len == NULL) {
ESP_LOGE(TAG, "Invalid parameters");
return false;
}
// 参数检查
if (reg_count == 0 || reg_count > 125) {
ESP_LOGE(TAG, "Invalid register count: %d", reg_count);
return false;
}
// 构建请求帧8字节
frame[0] = slave_addr; // 从机地址
frame[1] = MODBUS_FUNC_READ_HOLDING_REGISTERS; // 功能码 0x03
frame[2] = (start_addr >> 8) & 0xFF; // 起始地址高字节
frame[3] = start_addr & 0xFF; // 起始地址低字节
frame[4] = (reg_count >> 8) & 0xFF; // 寄存器数量高字节
frame[5] = reg_count & 0xFF; // 寄存器数量低字节
// 计算CRC
uint16_t crc = modbus_crc16(frame, 6);
frame[6] = crc & 0xFF; // CRC低字节
frame[7] = (crc >> 8) & 0xFF; // CRC高字节
*frame_len = 8;
ESP_LOGI(TAG, "Built request: slave=%d, start_addr=0x%04X, reg_count=%d",
slave_addr, start_addr, reg_count);
ESP_LOG_BUFFER_HEX(TAG, frame, 8);
return true;
}
bool modbus_parse_response(const uint8_t *frame, size_t frame_len, modbus_response_t *response)
{
if (frame == NULL || response == NULL) {
ESP_LOGE(TAG, "Invalid parameters");
return false;
}
// 初始化响应结构体
memset(response, 0, sizeof(modbus_response_t));
response->registers = NULL;
// 验证CRC
if (!modbus_verify_crc(frame, frame_len)) {
ESP_LOGE(TAG, "CRC verification failed");
return false;
}
// 解析基本字段
response->slave_addr = frame[0];
response->function_code = frame[1];
ESP_LOGI(TAG, "Parsing response: slave=%d, func=0x%02X", response->slave_addr, response->function_code);
// 检查是否为异常响应功能码最高位置1
if (response->function_code & 0x80) {
response->is_exception = true;
response->exception_code = frame[2];
ESP_LOGW(TAG, "Exception response: code=0x%02X", response->exception_code);
return true; // 异常响应也算解析成功
}
// 正常响应仅处理功能码03
if (response->function_code != MODBUS_FUNC_READ_HOLDING_REGISTERS) {
ESP_LOGE(TAG, "Unsupported function code: 0x%02X", response->function_code);
return false;
}
response->is_exception = false;
// 检查最小长度(地址+功能码+字节数+CRC = 5字节
if (frame_len < 5) {
ESP_LOGE(TAG, "Frame too short: %d", frame_len);
return false;
}
// 获取字节数
response->byte_count = frame[2];
// 检查帧长度是否正确
size_t expected_len = 3 + response->byte_count + 2; // 3字节头部 + 数据 + 2字节CRC
if (frame_len != expected_len) {
ESP_LOGE(TAG, "Frame length mismatch: expected=%d, actual=%d", expected_len, frame_len);
return false;
}
// 计算寄存器数量
response->register_count = response->byte_count / 2;
if (response->register_count == 0) {
ESP_LOGW(TAG, "No registers in response");
return true;
}
// 分配内存存储寄存器数据
response->registers = malloc(response->register_count * sizeof(uint16_t));
if (response->registers == NULL) {
ESP_LOGE(TAG, "Failed to allocate memory for registers");
return false;
}
// 解析寄存器数据(大端序)
for (uint8_t i = 0; i < response->register_count; i++) {
response->registers[i] = ((uint16_t)frame[3 + i * 2] << 8) | frame[3 + i * 2 + 1];
}
ESP_LOGI(TAG, "Parsed successfully: %d registers", response->register_count);
return true;
}
void modbus_free_response(modbus_response_t *response)
{
if (response != NULL && response->registers != NULL) {
free(response->registers);
response->registers = NULL;
}
}
// ============================
// MODBUS轮询任务相关
// ============================
static TaskHandle_t poll_task_handle = NULL;
static modbus_poll_config_t current_config = {0};
static SemaphoreHandle_t config_mutex = NULL;
/**
* @brief MODBUS轮询任务函数
*/
static void modbus_poll_task(void *arg)
{
ESP_LOGI(TAG, "MODBUS poll task started");
// 分配发送帧缓冲区
uint8_t request_frame[8];
size_t frame_len;
while (1) {
// 检查任务是否应该退出
if (poll_task_handle == NULL) {
break;
}
// 获取配置(互斥保护)
xSemaphoreTake(config_mutex, portMAX_DELAY);
bool enabled = current_config.enabled;
int channel_num = current_config.channel_num;
uint8_t slave_addr = current_config.slave_addr;
uint16_t start_addr = current_config.start_addr;
uint16_t reg_count = current_config.reg_count;
uint32_t poll_interval_ms = current_config.poll_interval_ms;
xSemaphoreGive(config_mutex);
// 检查是否启用
if (!enabled) {
vTaskDelay(pdMS_TO_TICKS(100));
continue;
}
// 验证通道号
if (channel_num < 0 || channel_num >= NUM_CHANNELS) {
ESP_LOGE(TAG, "Invalid channel number: %d", channel_num);
vTaskDelay(pdMS_TO_TICKS(1000));
continue;
}
// 构建MODBUS请求帧
if (modbus_build_read_holding_req(slave_addr, start_addr, reg_count, request_frame, &frame_len)) {
// 获取RS485通道
rs485_channel_t *ch = &rs485_channels[channel_num];
// 发送请求
ESP_LOGI(TAG, "Polling: channel=%s, slave=%d, addr=0x%04X, count=%d",
ch->name, slave_addr, start_addr, reg_count);
rs485_send(ch->uart_num, request_frame, frame_len);
} else {
ESP_LOGE(TAG, "Failed to build MODBUS request frame");
}
// 等待下一次轮询
vTaskDelay(pdMS_TO_TICKS(poll_interval_ms));
}
ESP_LOGI(TAG, "MODBUS poll task exiting");
poll_task_handle = NULL;
vTaskDelete(NULL);
}
BaseType_t modbus_start_poll_task(modbus_poll_config_t *config, UBaseType_t priority, uint32_t stack_size)
{
if (config == NULL) {
ESP_LOGE(TAG, "Invalid config parameter");
return pdFALSE;
}
// 参数验证
if (config->channel_num < 0 || config->channel_num >= NUM_CHANNELS) {
ESP_LOGE(TAG, "Invalid channel number: %d", config->channel_num);
return pdFALSE;
}
if (config->reg_count == 0 || config->reg_count > 125) {
ESP_LOGE(TAG, "Invalid register count: %d", config->reg_count);
return pdFALSE;
}
if (config->poll_interval_ms < 100) {
ESP_LOGE(TAG, "Poll interval too short (minimum 100ms): %d", config->poll_interval_ms);
return pdFALSE;
}
// 如果任务已存在,先停止
if (poll_task_handle != NULL) {
modbus_stop_poll_task();
vTaskDelay(pdMS_TO_TICKS(100));
}
// 创建互斥量
if (config_mutex == NULL) {
config_mutex = xSemaphoreCreateMutex();
if (config_mutex == NULL) {
ESP_LOGE(TAG, "Failed to create config mutex");
return pdFALSE;
}
}
// 保存配置
xSemaphoreTake(config_mutex, portMAX_DELAY);
memcpy(&current_config, config, sizeof(modbus_poll_config_t));
current_config.enabled = true;
xSemaphoreGive(config_mutex);
// 创建轮询任务
BaseType_t ret = xTaskCreate(modbus_poll_task, "modbus_poll", stack_size, NULL, priority, &poll_task_handle);
if (ret == pdPASS) {
ESP_LOGI(TAG, "MODBUS poll task started successfully");
ESP_LOGI(TAG, "Config: channel=%d, slave=%d, start_addr=0x%04X, reg_count=%d, interval=%dms",
config->channel_num, config->slave_addr, config->start_addr,
config->reg_count, config->poll_interval_ms);
} else {
ESP_LOGE(TAG, "Failed to create MODBUS poll task");
}
return ret;
}
void modbus_stop_poll_task(void)
{
if (poll_task_handle != NULL) {
ESP_LOGI(TAG, "Stopping MODBUS poll task...");
// 禁用轮询
xSemaphoreTake(config_mutex, portMAX_DELAY);
current_config.enabled = false;
xSemaphoreGive(config_mutex);
// 等待任务退出
vTaskDelay(pdMS_TO_TICKS(200));
// 删除任务
TaskHandle_t temp_handle = poll_task_handle;
poll_task_handle = NULL;
vTaskDelete(temp_handle);
ESP_LOGI(TAG, "MODBUS poll task stopped");
}
}
bool modbus_update_poll_config(modbus_poll_config_t *config)
{
if (config == NULL) {
ESP_LOGE(TAG, "Invalid config parameter");
return false;
}
if (config->channel_num < 0 || config->channel_num >= NUM_CHANNELS) {
ESP_LOGE(TAG, "Invalid channel number: %d", config->channel_num);
return false;
}
if (config->reg_count == 0 || config->reg_count > 125) {
ESP_LOGE(TAG, "Invalid register count: %d", config->reg_count);
return false;
}
if (config->poll_interval_ms < 100) {
ESP_LOGE(TAG, "Poll interval too short (minimum 100ms): %d", config->poll_interval_ms);
return false;
}
// 如果互斥量还没创建,直接更新配置
if (config_mutex == NULL) {
memcpy(&current_config, config, sizeof(modbus_poll_config_t));
} else {
// 互斥保护
xSemaphoreTake(config_mutex, portMAX_DELAY);
memcpy(&current_config, config, sizeof(modbus_poll_config_t));
xSemaphoreGive(config_mutex);
}
ESP_LOGI(TAG, "MODBUS poll config updated: channel=%d, slave=%d, start_addr=0x%04X, reg_count=%d, interval=%dms, enabled=%d",
config->channel_num, config->slave_addr, config->start_addr,
config->reg_count, config->poll_interval_ms, config->enabled);
// 如果轮询任务还没有启动,自动启动
if (poll_task_handle == NULL && config->enabled) {
ESP_LOGI(TAG, "Auto-starting MODBUS poll task...");
// 先创建互斥量(如果还没创建)
if (config_mutex == NULL) {
config_mutex = xSemaphoreCreateMutex();
if (config_mutex == NULL) {
ESP_LOGE(TAG, "Failed to create config mutex");
return false;
}
}
// 启动轮询任务
BaseType_t ret = xTaskCreate(modbus_poll_task, "modbus_poll", 4096, NULL, 5, &poll_task_handle);
if (ret != pdPASS) {
ESP_LOGE(TAG, "Failed to auto-start MODBUS poll task");
return false;
}
ESP_LOGI(TAG, "MODBUS poll task auto-started");
}
return true;
}
modbus_poll_config_t* modbus_get_current_config(void)
{
return &current_config;
}

View File

@@ -0,0 +1,136 @@
#ifndef MODBUS_ESP_H
#define MODBUS_ESP_H
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
/**
* @brief MODBUS功能码定义
*/
typedef enum {
MODBUS_FUNC_READ_HOLDING_REGISTERS = 0x03, // 读取保持寄存器
} modbus_function_code_t;
/**
* @brief MODBUS异常码定义
*/
typedef enum {
MODBUS_EXCEPTION_ILLEGAL_FUNCTION = 0x01,
MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS = 0x02,
MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE = 0x03,
MODBUS_EXCEPTION_SERVER_DEVICE_FAILURE = 0x04,
} modbus_exception_code_t;
/**
* @brief MODBUS响应结构体
*/
typedef struct {
uint8_t slave_addr; // 从机地址
uint8_t function_code; // 功能码
uint8_t byte_count; // 数据字节数
uint16_t *registers; // 寄存器数据(需要调用者释放)
uint8_t register_count; // 寄存器数量
bool is_exception; // 是否为异常响应
uint8_t exception_code; // 异常码(如果是异常响应)
} modbus_response_t;
/**
* @brief 计算CRC-16 (MODBUS RTU标准)
*
* @param data 数据指针
* @param len 数据长度
* @return uint16_t CRC校验值
*/
uint16_t modbus_crc16(const uint8_t *data, size_t len);
/**
* @brief 验证CRC校验
*
* @param data 数据指针包含CRC的完整帧
* @param len 数据长度包含CRC的2个字节
* @return true CRC校验成功
* @return false CRC校验失败
*/
bool modbus_verify_crc(const uint8_t *data, size_t len);
/**
* @brief 构建MODBUS RTU读取保持寄存器请求帧功能码03
*
* @param slave_addr 从机地址
* @param start_addr 起始寄存器地址
* @param reg_count 读取寄存器数量
* @param frame 输出帧缓冲区需要至少8字节
* @param frame_len 输出帧长度
* @return true 构建成功
* @return false 构建失败(参数错误)
*/
bool modbus_build_read_holding_req(uint8_t slave_addr, uint16_t start_addr, uint16_t reg_count,
uint8_t *frame, size_t *frame_len);
/**
* @brief 解析MODBUS RTU响应帧仅支持功能码03
*
* @param frame 接收到的帧数据
* @param frame_len 帧长度
* @param response 解析结果结构体
* @return true 解析成功
* @return false 解析失败CRC错误、格式错误等
*/
bool modbus_parse_response(const uint8_t *frame, size_t frame_len, modbus_response_t *response);
/**
* @brief 释放MODBUS响应结构体中的寄存器内存
*
* @param response MODBUS响应结构体
*/
void modbus_free_response(modbus_response_t *response);
/**
* @brief MODBUS轮询配置结构体
*/
typedef struct {
int channel_num; // RS485通道号 (0 或 1)
uint8_t slave_addr; // 从机地址
uint16_t start_addr; // 起始寄存器地址
uint16_t reg_count; // 读取寄存器数量
uint32_t poll_interval_ms; // 轮询间隔(毫秒)
bool enabled; // 是否启用
} modbus_poll_config_t;
/**
* @brief 启动MODBUS轮询任务
*
* @param config 轮询配置指针
* @param priority 任务优先级
* @param stack_size 任务栈大小
* @return BaseType_t pdTRUE 成功, pdFALSE 失败
*/
BaseType_t modbus_start_poll_task(modbus_poll_config_t *config, UBaseType_t priority, uint32_t stack_size);
/**
* @brief 停止MODBUS轮询任务
*
* @return 无返回值
*/
void modbus_stop_poll_task(void);
/**
* @brief 更新轮询配置
*
* @param config 新的轮询配置
* @return true 更新成功
* @return false 更新失败
*/
bool modbus_update_poll_config(modbus_poll_config_t *config);
/**
* @brief 获取当前轮询配置
*
* @return modbus_poll_config_t* 当前配置指针
*/
modbus_poll_config_t* modbus_get_current_config(void);
#endif // MODBUS_ESP_H

View File

@@ -0,0 +1,3 @@
idf_component_register(SRCS "MQTT_ESP.c"
PRIV_REQUIRES mqtt log STATUS_LED MODBUS_ESP SNTP_ESP json esp_wifi esp_system
INCLUDE_DIRS "include")

View File

@@ -0,0 +1,59 @@
menu "MQTT连接配置"
config BROKER_URI
string "MQTT服务器地址"
default "mqtt://mqtt.eclipseprojects.io:1883"
help
要连接的MQTT Broker的完整URL。例如
ws://broker.emqx.io:8083/mqtt (明文WebSocket)
wss://broker.emqx.io:8084/mqtt (加密WebSocket)
mqtt://192.168.1.100:1883 (明文TCP)
config MQTT_CLIENT_ID
string "客户端标识符"
default "esp32_client_01"
help
MQTT协议中用于识别客户端的唯一ID。如果留空部分服务器会自动生成。
config MQTT_USERNAME
string "用户名"
default ""
help
用于连接MQTT服务器的用户名如果需要认证。如果无需认证请留空。
config MQTT_PASSWORD
string "用户密码"
default ""
help
用于连接MQTT服务器的密码如果需要认证。如果无需认证请留空。
config MQTT_PUB_TOPIC
string "发布主题"
default "/device/esp32/pub"
help
ESP32将向此主题(Topic)发布(Publish)消息。
config MQTT_SUB_TOPIC
string "订阅主题"
default "/device/esp32/sub"
help
ESP32将订阅(Subscribe)此主题(Topic)以接收消息。
config BROKER_CERTIFICATE_OVERRIDE
string "服务器证书覆盖"
default ""
help
如果服务器证书已从文本文件加载请留空否则请填写PEM格式证书的base64编码部分。
config BROKER_CERTIFICATE_OVERRIDDEN
bool
default y if BROKER_CERTIFICATE_OVERRIDE != ""
config BROKER_BIN_SIZE_TO_SEND
# This option is not visible and is used only to set parameters for example tests
# Here we configure the data size to send and to be expected in the python script
int
default 20000
endmenu

View File

@@ -0,0 +1,487 @@
#include <stdio.h>
#include "MQTT_ESP.h"
#include "STATUS_LED.h"
#include "MODBUS_ESP.h"
#include "SNTP_ESP.h"
#include "cJSON.h"
#include "esp_wifi.h"
#include "esp_mac.h"
#include "esp_system.h"
#include "esp_netif.h"
#include <time.h>
static const char *TAG = "mqtt_esp";
// 全局MQTT客户端句柄
static esp_mqtt_client_handle_t g_client = NULL;
// ============================
// 设备状态上报任务相关
// ============================
static TaskHandle_t device_status_task_handle = NULL;
static uint32_t g_report_interval_ms = 10000; // 默认10秒上报一次
static SemaphoreHandle_t report_interval_mutex = NULL;
/**
* @brief 获取设备MAC地址字符串
*/
static void get_device_mac(char *mac_str, size_t max_len)
{
uint8_t mac[6];
esp_read_mac(mac, ESP_MAC_WIFI_STA);
snprintf(mac_str, max_len, "%02X:%02X:%02X:%02X:%02X:%02X",
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
}
/**
* @brief 获取设备运行时间(秒)
*/
static uint32_t get_device_uptime(void)
{
return (uint32_t)(xTaskGetTickCount() * portTICK_PERIOD_MS / 1000);
}
/**
* @brief 获取设备IP地址字符串
*/
static void get_device_ip(char *ip_str, size_t max_len)
{
esp_netif_t *netif = esp_netif_get_handle_from_ifkey("ETH_DEF");
if (netif != NULL) {
esp_netif_ip_info_t ip_info;
if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK) {
snprintf(ip_str, max_len, IPSTR, IP2STR(&ip_info.ip));
} else {
strncpy(ip_str, "N/A", max_len);
}
} else {
strncpy(ip_str, "N/A", max_len);
}
}
/**
* @brief 获取当前时间字符串
*/
static void get_current_time(char *time_str, size_t max_len)
{
// 使用SNTP组件获取格式化时间
if (sntp_esp_get_formatted_time(time_str, max_len, "%Y-%m-%d %H:%M:%S") != ESP_OK) {
// 如果获取失败,使用本地时间
time_t now;
time(&now);
struct tm timeinfo;
localtime_r(&now, &timeinfo);
strftime(time_str, max_len, "%Y-%m-%d %H:%M:%S", &timeinfo);
}
}
/**
* @brief 获取LED状态描述中文
*/
static const char* get_led_state_desc(led_state_t state)
{
switch (state) {
case LED_OFF: return "关闭";
case LED_ON: return "常亮";
case LED_BLINK_SLOW: return "慢闪";
case LED_BLINK_FAST: return "快闪";
case LED_HEARTBEAT: return "心跳";
default: return "未知";
}
}
/**
* @brief 获取运行时间描述(中文)
*/
static void get_uptime_desc(uint32_t uptime_sec, char *desc, size_t max_len)
{
uint32_t days = uptime_sec / 86400;
uint32_t hours = (uptime_sec % 86400) / 3600;
uint32_t minutes = (uptime_sec % 3600) / 60;
uint32_t seconds = uptime_sec % 60;
if (days > 0) {
snprintf(desc, max_len, "%lu天%lu小时%lu分%lu秒", days, hours, minutes, seconds);
} else if (hours > 0) {
snprintf(desc, max_len, "%lu小时%lu分%lu秒", hours, minutes, seconds);
} else if (minutes > 0) {
snprintf(desc, max_len, "%lu分%lu秒", minutes, seconds);
} else {
snprintf(desc, max_len, "%lu秒", seconds);
}
}
/**
* @brief 构建设备状态JSON
*/
static char* build_device_status_json(void)
{
char mac_str[18];
char ip_str[16];
char time_str[32];
char uptime_desc[64];
get_device_mac(mac_str, sizeof(mac_str));
get_device_ip(ip_str, sizeof(ip_str));
get_current_time(time_str, sizeof(time_str));
get_uptime_desc(get_device_uptime(), uptime_desc, sizeof(uptime_desc));
cJSON *root = cJSON_CreateObject();
if (root == NULL) {
return NULL;
}
// 基本信息
cJSON_AddStringToObject(root, "message_type", "device_status");
cJSON_AddStringToObject(root, "mac_address", mac_str);
cJSON_AddStringToObject(root, "ip_address", ip_str);
cJSON_AddStringToObject(root, "chip_model", "ESP32-S3");
// IDF 版本
cJSON_AddStringToObject(root, "idf_version", esp_get_idf_version());
// 运行状态
cJSON_AddNumberToObject(root, "uptime", get_device_uptime());
cJSON_AddStringToObject(root, "uptime_desc", uptime_desc); // 中文描述
cJSON_AddNumberToObject(root, "free_heap", esp_get_free_heap_size());
cJSON_AddStringToObject(root, "status", "online");
cJSON_AddStringToObject(root, "status_desc", "在线"); // 中文描述
cJSON_AddStringToObject(root, "update_time", time_str); // 更新时间
// LED 状态(带中文描述)
led_state_t led1_state = status_led_get_state(1);
led_state_t led2_state = status_led_get_state(2);
cJSON_AddNumberToObject(root, "led1_state", (int)led1_state);
cJSON_AddStringToObject(root, "led1_desc", get_led_state_desc(led1_state)); // LED1: 网络状态
cJSON_AddNumberToObject(root, "led2_state", (int)led2_state);
cJSON_AddStringToObject(root, "led2_desc", get_led_state_desc(led2_state)); // LED2: 通信状态
// LED 功能说明(中文)
cJSON_AddStringToObject(root, "led1_function", "网络状态灯");
cJSON_AddStringToObject(root, "led2_function", "通信状态灯");
// MODBUS 轮询状态
modbus_poll_config_t *modbus_config = modbus_get_current_config();
if (modbus_config != NULL) {
cJSON_AddNumberToObject(root, "modbus_enabled", modbus_config->enabled);
cJSON_AddStringToObject(root, "modbus_enabled_desc", modbus_config->enabled ? "启用" : "禁用");
cJSON_AddNumberToObject(root, "modbus_channel", modbus_config->channel_num);
cJSON_AddStringToObject(root, "modbus_channel_desc", modbus_config->channel_num == 0 ? "通道0 (UART0)" : "通道1 (UART2)");
cJSON_AddNumberToObject(root, "modbus_slave_addr", modbus_config->slave_addr);
cJSON_AddNumberToObject(root, "modbus_interval", modbus_config->poll_interval_ms);
} else {
cJSON_AddNumberToObject(root, "modbus_enabled", 0);
cJSON_AddStringToObject(root, "modbus_enabled_desc", "未配置");
cJSON_AddNumberToObject(root, "modbus_channel", 0);
cJSON_AddStringToObject(root, "modbus_channel_desc", "N/A");
cJSON_AddNumberToObject(root, "modbus_slave_addr", 0);
cJSON_AddNumberToObject(root, "modbus_interval", 0);
}
// 内存使用情况
uint32_t total_heap = esp_get_free_heap_size();
cJSON_AddStringToObject(root, "heap_status", total_heap > 100000 ? "充足" : (total_heap > 50000 ? "一般" : "紧张"));
char *json_str = cJSON_Print(root);
cJSON_Delete(root);
return json_str;
}
/**
* @brief 设备状态上报任务
*/
static void device_status_report_task(void *arg)
{
ESP_LOGI(TAG, "Device status report task started");
while (1) {
// 检查是否应该退出
if (device_status_task_handle == NULL) {
break;
}
// 检查MQTT是否已连接
if (g_client != NULL) {
// 构建设备状态JSON
char *status_json = build_device_status_json();
if (status_json != NULL) {
// 发布到MQTT
int ret = esp_mqtt_client_publish(g_client, CONFIG_MQTT_PUB_TOPIC,
status_json, strlen(status_json), 0, 0);
if (ret >= 0) {
ESP_LOGI(TAG, "Device status published, msg_id=%d", ret);
ESP_LOGD(TAG, "Status: %s", status_json);
} else {
ESP_LOGW(TAG, "Failed to publish device status");
}
free(status_json);
}
}
// 获取上报间隔
uint32_t interval;
xSemaphoreTake(report_interval_mutex, portMAX_DELAY);
interval = g_report_interval_ms;
xSemaphoreGive(report_interval_mutex);
// 等待下一次上报
vTaskDelay(pdMS_TO_TICKS(interval));
}
ESP_LOGI(TAG, "Device status report task exiting");
device_status_task_handle = NULL;
vTaskDelete(NULL);
}
BaseType_t mqtt_start_device_status_task(uint32_t report_interval_ms)
{
// 如果任务已存在,先停止
if (device_status_task_handle != NULL) {
mqtt_stop_device_status_task();
vTaskDelay(pdMS_TO_TICKS(100));
}
// 创建互斥量
if (report_interval_mutex == NULL) {
report_interval_mutex = xSemaphoreCreateMutex();
if (report_interval_mutex == NULL) {
ESP_LOGE(TAG, "Failed to create report interval mutex");
return pdFALSE;
}
}
// 更新上报间隔
xSemaphoreTake(report_interval_mutex, portMAX_DELAY);
g_report_interval_ms = report_interval_ms > 0 ? report_interval_ms : 10000;
xSemaphoreGive(report_interval_mutex);
// 创建任务
BaseType_t ret = xTaskCreate(device_status_report_task, "dev_status",
4096, NULL, 5, &device_status_task_handle);
if (ret == pdPASS) {
ESP_LOGI(TAG, "Device status report task started (interval=%dms)", g_report_interval_ms);
} else {
ESP_LOGE(TAG, "Failed to create device status report task");
}
return ret;
}
void mqtt_stop_device_status_task(void)
{
if (device_status_task_handle != NULL) {
ESP_LOGI(TAG, "Stopping device status report task...");
TaskHandle_t temp_handle = device_status_task_handle;
device_status_task_handle = NULL;
vTaskDelete(temp_handle);
vTaskDelay(pdMS_TO_TICKS(200));
ESP_LOGI(TAG, "Device status report task stopped");
}
}
void mqtt_update_report_interval(uint32_t report_interval_ms)
{
if (report_interval_mutex != NULL) {
xSemaphoreTake(report_interval_mutex, portMAX_DELAY);
g_report_interval_ms = report_interval_ms > 0 ? report_interval_ms : 10000;
xSemaphoreGive(report_interval_mutex);
ESP_LOGI(TAG, "Device status report interval updated to %dms", g_report_interval_ms);
}
}
/**
* @brief MQTT事件处理函数
*
* 处理MQTT客户端的各种事件包括连接、订阅、发布、数据接收和错误处理。
*
* @param handler_args 事件处理器参数
* @param base 事件基础类型
* @param event_id 事件ID
* @param event_data 指向MQTT事件数据的指针
*/
static void mqtt_event_handler(void *handler_args, esp_event_base_t base, int32_t event_id, void *event_data)
{
ESP_LOGD(TAG, "Event dispatched from event loop base=%s, event_id=%" PRIi32, base, event_id);
esp_mqtt_event_handle_t event = event_data;
esp_mqtt_client_handle_t client = event->client;
int msg_id;
switch ((esp_mqtt_event_id_t)event_id) {
case MQTT_EVENT_CONNECTED:
ESP_LOGI(TAG, "MQTT_EVENT_CONNECTED");
// 订阅并取消订阅测试主题
msg_id = esp_mqtt_client_subscribe(client, CONFIG_MQTT_SUB_TOPIC, 1);
ESP_LOGI(TAG, "sent subscribe successful, msg_id=%d", msg_id);
status_led_blink_mode(2, 2); // LED2 心跳MQTT连接正常
break;
case MQTT_EVENT_DISCONNECTED:
ESP_LOGI(TAG, "MQTT_EVENT_DISCONNECTED");
status_led_blink_mode(2, 1); // LED2 快闪MQTT断开正在重连
break;
case MQTT_EVENT_SUBSCRIBED:
ESP_LOGI(TAG, "MQTT_EVENT_SUBSCRIBED, msg_id=%d, return code=0x%02x ", event->msg_id, (uint8_t)*event->data);
// 立即上报一次设备状态
char *status_json = build_device_status_json();
if (status_json != NULL) {
msg_id = esp_mqtt_client_publish(client, CONFIG_MQTT_PUB_TOPIC,
status_json, strlen(status_json), 0, 0);
if (msg_id >= 0) {
ESP_LOGI(TAG, "Device status published immediately, msg_id=%d", msg_id);
}
free(status_json);
}
break;
case MQTT_EVENT_UNSUBSCRIBED:
ESP_LOGI(TAG, "MQTT_EVENT_UNSUBSCRIBED, msg_id=%d", event->msg_id);
break;
case MQTT_EVENT_PUBLISHED:
ESP_LOGI(TAG, "MQTT_EVENT_PUBLISHED, msg_id=%d", event->msg_id);
break;
case MQTT_EVENT_DATA:
ESP_LOGI(TAG, "MQTT_EVENT_DATA");
ESP_LOGI(TAG, "TOPIC=%.*s", event->topic_len, event->topic);
ESP_LOGI(TAG, "DATA=%.*s", event->data_len, event->data);
// 解析MQTT控制指令JSON格式
if (event->data_len > 0 && event->data != NULL) {
// 创建临时缓冲区存储JSON数据
char *json_str = malloc(event->data_len + 1);
if (json_str != NULL) {
memcpy(json_str, event->data, event->data_len);
json_str[event->data_len] = '\0';
// 解析JSON
cJSON *root = cJSON_Parse(json_str);
if (root != NULL) {
// 检查是否是MODBUS轮询控制指令
cJSON *cmd = cJSON_GetObjectItem(root, "command");
if (cmd != NULL && cJSON_IsString(cmd)) {
if (strcmp(cmd->valuestring, "modbus_poll") == 0) {
// 解析轮询配置
cJSON *channel = cJSON_GetObjectItem(root, "channel");
cJSON *slave_addr = cJSON_GetObjectItem(root, "slave_addr");
cJSON *start_addr = cJSON_GetObjectItem(root, "start_addr");
cJSON *reg_count = cJSON_GetObjectItem(root, "reg_count");
cJSON *interval = cJSON_GetObjectItem(root, "interval");
cJSON *enabled = cJSON_GetObjectItem(root, "enabled");
// 验证必要字段
if (channel != NULL && cJSON_IsNumber(channel) &&
slave_addr != NULL && cJSON_IsNumber(slave_addr) &&
start_addr != NULL && cJSON_IsNumber(start_addr) &&
reg_count != NULL && cJSON_IsNumber(reg_count) &&
interval != NULL && cJSON_IsNumber(interval)) {
// 构建轮询配置
modbus_poll_config_t poll_config = {
.channel_num = channel->valueint,
.slave_addr = (uint8_t)slave_addr->valueint,
.start_addr = (uint16_t)start_addr->valueint,
.reg_count = (uint16_t)reg_count->valueint,
.poll_interval_ms = (uint32_t)interval->valueint,
.enabled = (enabled != NULL && cJSON_IsBool(enabled)) ? cJSON_IsTrue(enabled) : true
};
// 更新轮询配置
if (modbus_update_poll_config(&poll_config)) {
ESP_LOGI(TAG, "MODBUS poll config updated via MQTT");
} else {
ESP_LOGE(TAG, "Failed to update MODBUS poll config");
}
} else {
ESP_LOGE(TAG, "Missing required fields in MODBUS poll command");
}
}
}
cJSON_Delete(root);
} else {
ESP_LOGE(TAG, "Failed to parse JSON: %s", json_str);
}
free(json_str);
}
}
break;
case MQTT_EVENT_ERROR:
ESP_LOGI(TAG, "MQTT_EVENT_ERROR");
// 错误类型处理分支
if (event->error_handle->error_type == MQTT_ERROR_TYPE_TCP_TRANSPORT) {
ESP_LOGI(TAG, "Last error code reported from esp-tls: 0x%x", event->error_handle->esp_tls_last_esp_err);
ESP_LOGI(TAG, "Last tls stack error number: 0x%x", event->error_handle->esp_tls_stack_err);
ESP_LOGI(TAG, "Last captured errno : %d (%s)", event->error_handle->esp_transport_sock_errno,
strerror(event->error_handle->esp_transport_sock_errno));
} else if (event->error_handle->error_type == MQTT_ERROR_TYPE_CONNECTION_REFUSED) {
ESP_LOGI(TAG, "Connection refused error: 0x%x", event->error_handle->connect_return_code);
} else {
ESP_LOGW(TAG, "Unknown error type: 0x%x", event->error_handle->error_type);
}
status_led_blink_mode(2, 0); // LED2 慢闪MQTT错误
break;
default:
ESP_LOGI(TAG, "Other event id:%d", event->event_id);
break;
}
}
/**
* @brief 启动MQTT客户端应用程序
*
* 初始化MQTT客户端配置注册事件处理程序并启动MQTT连接
*
* @param 无参数
* @return 无返回值
*/
void mqtt_app_start(void)
{
// 配置MQTT客户端结构体设置代理服务器地址和证书验证
const esp_mqtt_client_config_t mqtt_cfg = {
.broker.address.uri = CONFIG_BROKER_URI,
// .broker.verification.certificate = (const char *)mqtt_eclipseprojects_io_pem_start,
.credentials.client_id = CONFIG_MQTT_CLIENT_ID,
.credentials.username = CONFIG_MQTT_USERNAME,
.credentials.authentication.password = CONFIG_MQTT_PASSWORD,
};
ESP_LOGI(TAG, "[APP] Free memory: %" PRIu32 " bytes", esp_get_free_heap_size());
g_client = esp_mqtt_client_init(&mqtt_cfg);
/* The last argument may be used to pass data to the event handler, in this example mqtt_event_handler */
esp_mqtt_client_register_event(g_client, ESP_EVENT_ANY_ID, mqtt_event_handler, NULL);
esp_mqtt_client_start(g_client);
}
/**
* @brief 发布MQTT消息
*
* 提供一个外部接口来发布MQTT消息
*
* @param topic 发布的主题
* @param data 要发布的数据
* @param len 数据长度
* @param qos QoS级别 (0, 1, 或 2)
* @param retain 是否保留消息
* @return 消息ID如果失败则返回负数
*/
int mqtt_publish_message(const char* topic, const char* data, int len, int qos, int retain)
{
if (g_client == NULL) {
ESP_LOGE(TAG, "MQTT client not initialized");
return -1;
}
int msg_id = esp_mqtt_client_publish(g_client, topic, data, len, qos, retain);
if (msg_id < 0) {
ESP_LOGE(TAG, "Failed to publish message to topic: %s", topic);
return -1;
}
ESP_LOGI(TAG, "Published message to topic: %s, msg_id: %d", topic, msg_id);
return msg_id;
}

View File

@@ -0,0 +1,25 @@
#include "mqtt_client.h"
#include "esp_log.h"
void mqtt_app_start(void);
int mqtt_publish_message(const char* topic, const char* data, int len, int qos, int retain);
/**
* @brief 启动设备状态上报任务
*
* @param report_interval_ms 上报间隔(毫秒)
* @return pdTRUE 成功, pdFALSE 失败
*/
BaseType_t mqtt_start_device_status_task(uint32_t report_interval_ms);
/**
* @brief 停止设备状态上报任务
*/
void mqtt_stop_device_status_task(void);
/**
* @brief 更新设备状态上报间隔
*
* @param report_interval_ms 新的上报间隔(毫秒)
*/
void mqtt_update_report_interval(uint32_t report_interval_ms);

View File

@@ -0,0 +1,4 @@
idf_component_register(SRCS "RS-485-SP3485EEN.c"
INCLUDE_DIRS "include"
REQUIRES nvs_flash driver MQTT_ESP mqtt STATUS_LED MODBUS_ESP json
)

View File

@@ -0,0 +1,311 @@
#include "RS-485-SP3485EEN.h"
#include <esp_log.h>
#include "MQTT_ESP.h"
#include "STATUS_LED.h"
#include "MODBUS_ESP.h"
#include "cJSON.h"
#define TAG "RS485_DRIVER"
// Timeout threshold for UART = number of symbols (~10 tics) with unchanged state on receive pin
#define ECHO_READ_TOUT (3) // 3.5T * 8 = 28 ticks, TOUT=3 -> ~24..33 ticks
// ----------------------------
// 通道数组定义
// ----------------------------
rs485_channel_t rs485_channels[] = {
{RS_485_SP3485EEN_UART_PORT, RS_485_SP3485EEN_DI_PIN, RS_485_SP3485EEN_RO_PIN, RS_485_SP3485EEN_DE_RE_PIN, "RS485-1"},
{RS_485_SP3485EEN_2_UART_PORT, RS_485_SP3485EEN_2_DI_PIN, RS_485_SP3485EEN_2_RO_PIN, RS_485_SP3485EEN_2_DE_RE_PIN, "RS485-2"}};
// ============================
// UART 发送函数
// ============================
void rs485_send(uart_port_t uart_num, const uint8_t *data, size_t len)
{
if (data == NULL || len == 0)
{
ESP_LOGW(TAG, "rs485_send: empty payload");
return;
}
// 清空 RX防止残留帧污染
uart_flush_input(uart_num);
// 发送数据
int written = uart_write_bytes(uart_num, (const char *)data, len);
if (written < 0)
{
ESP_LOGE(TAG, "UART%d TX write error (%d)", uart_num, written);
return;
}
if ((size_t)written != len)
{
ESP_LOGW(TAG, "UART%d TX partial (%d/%d)", uart_num, written, len);
}
// RS485 半双工模式下uart_write_bytes 会自动等待发送完成
// 这里只需要等待一个额外的延时确保所有数据都已发送完成
// 根据波特率和字节数计算传输时间11位/字节1起始位+8数据位+1停止位+1奇偶校验位
uint32_t transmit_time_ms = (len * 11 * 1000) / (BAUD_RATE > 0 ? BAUD_RATE : 1);
vTaskDelay(pdMS_TO_TICKS(transmit_time_ms + 5));
// Modbus RTU 3.5T 帧间静默(保留短延时)
vTaskDelay(pdMS_TO_TICKS(5));
ESP_LOGI(TAG, "UART%d TX done (%d bytes)", uart_num, written);
}
// ============================
// UART 接收函数
// ============================
int rs485_receive(uart_port_t uart_num, uint8_t *buffer, size_t buf_size, uint32_t timeout_ms)
{
if (buffer == NULL || buf_size == 0)
{
ESP_LOGW(TAG, "rs485_receive: invalid buffer");
return -1;
}
int len = uart_read_bytes(uart_num, buffer, buf_size, pdMS_TO_TICKS(timeout_ms));
if (len > 0)
{
ESP_LOGI(TAG, "UART%d RX (%d bytes)", uart_num, len);
// 不在这里打印数据交由调用者task处理避免重复日志
}
else if (len == 0)
{
ESP_LOGD(TAG, "UART%d RX timeout", uart_num);
}
else
{
ESP_LOGW(TAG, "UART%d RX error (%d)", uart_num, len);
}
return len;
}
// ============================
// RS485 初始化函数
// ============================
void RS_485_init(uart_port_t uart_num, int tx_pin, int rx_pin, int de_re_pin)
{
uart_config_t uart_config = {
.baud_rate = BAUD_RATE,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.source_clk = UART_SCLK_DEFAULT,
.rx_flow_ctrl_thresh = 122,
};
ESP_ERROR_CHECK(uart_driver_install(
uart_num,
BUF_SIZE * 2,
BUF_SIZE * 2,
0,
NULL,
0));
ESP_ERROR_CHECK(uart_param_config(uart_num, &uart_config));
ESP_ERROR_CHECK(uart_set_pin(
uart_num,
tx_pin,
rx_pin,
de_re_pin,
UART_PIN_NO_CHANGE));
ESP_ERROR_CHECK(uart_set_mode(uart_num, UART_MODE_RS485_HALF_DUPLEX));
ESP_ERROR_CHECK(uart_set_rx_timeout(uart_num, ECHO_READ_TOUT));
ESP_LOGI(TAG,
"RS485 init OK: UART%d TX=%d RX=%d DE/RE=%d",
uart_num, tx_pin, rx_pin, de_re_pin);
}
// ============================
// 初始化指定RS485通道
// ============================
void init_specific_rs485_channel(int channel_num)
{
if (channel_num < 0 || channel_num >= NUM_CHANNELS)
{
ESP_LOGE(TAG, "Invalid channel number: %d", channel_num);
return;
}
rs485_channel_t *ch = &rs485_channels[channel_num];
// 初始化RS485硬件
RS_485_init(ch->uart_num, ch->tx_pin, ch->rx_pin, ch->de_re_pin);
ESP_LOGI(TAG, "Channel %d: %s (UART%d) initialized",
channel_num, ch->name, ch->uart_num);
}
// ============================
// 初始化所有RS485通道
// ============================
void init_all_rs485_channels(void)
{
ESP_LOGI(TAG, "Initializing %d RS485 channels", NUM_CHANNELS);
for (int i = 0; i < NUM_CHANNELS; i++)
{
init_specific_rs485_channel(i);
}
}
/* 接收任务:参数为通道索引 (int cast via intptr_t) */
static void rs485_rx_task(void *arg)
{
int channel = (int)(intptr_t)arg;
if (channel < 0 || channel >= NUM_CHANNELS)
{
ESP_LOGE(TAG, "rs485_rx_task: invalid channel %d", channel);
vTaskDelete(NULL);
return;
}
rs485_channel_t *ch = &rs485_channels[channel];
/* 使用堆分配,避免栈溢出 */
uint8_t *buf = malloc(BUF_SIZE);
if (buf == NULL)
{
ESP_LOGE(TAG, "rs485_rx_task: malloc failed");
vTaskDelete(NULL);
return;
}
ESP_LOGI(TAG, "%s RX task started", ch->name);
while (1)
{
int len = rs485_receive(ch->uart_num, buf, BUF_SIZE, 100); // 100ms timeout for Modbus
if (len > 0)
{
// 数据接收成功LED2 短暂亮起表示有数据
status_led_set(2, 1);
ESP_LOGI(TAG, "%s UART%d RX (%d bytes)", ch->name, ch->uart_num, len);
ESP_LOG_BUFFER_HEX(TAG, buf, len);
// 尝试解析MODBUS响应
modbus_response_t response;
if (modbus_parse_response(buf, len, &response))
{
// MODBUS解析成功构建JSON格式数据
cJSON *root = cJSON_CreateObject();
if (root != NULL)
{
// 添加基本信息
cJSON_AddStringToObject(root, "channel", ch->name);
cJSON_AddNumberToObject(root, "slave_addr", response.slave_addr);
cJSON_AddNumberToObject(root, "function_code", response.function_code);
if (response.is_exception)
{
// 异常响应
cJSON_AddStringToObject(root, "status", "exception");
cJSON_AddNumberToObject(root, "exception_code", response.exception_code);
ESP_LOGW(TAG, "Modbus exception response: code=0x%02X", response.exception_code);
}
else
{
// 正常响应
cJSON_AddStringToObject(root, "status", "success");
cJSON_AddNumberToObject(root, "byte_count", response.byte_count);
cJSON_AddNumberToObject(root, "register_count", response.register_count);
// 添加寄存器数组
cJSON *reg_array = cJSON_CreateArray();
if (reg_array != NULL)
{
for (uint8_t i = 0; i < response.register_count; i++)
{
cJSON_AddItemToArray(reg_array, cJSON_CreateNumber(response.registers[i]));
}
cJSON_AddItemToObject(root, "registers", reg_array);
}
ESP_LOGI(TAG, "Modbus response parsed: slave=%d, func=0x%02X, regs=%d",
response.slave_addr, response.function_code, response.register_count);
}
// 转换为JSON字符串
char *json_str = cJSON_Print(root);
if (json_str != NULL)
{
// 发布JSON数据到MQTT
int ret = mqtt_publish_message(CONFIG_MQTT_PUB_TOPIC, json_str, strlen(json_str), 0, 0);
if (ret < 0)
{
ESP_LOGW(TAG, "Failed to publish Modbus JSON to MQTT topic %s", CONFIG_MQTT_PUB_TOPIC);
}
else
{
ESP_LOGI(TAG, "Published Modbus JSON to MQTT topic %s, msg_id: %d", CONFIG_MQTT_PUB_TOPIC, ret);
ESP_LOGD(TAG, "JSON payload: %s", json_str);
}
free(json_str);
}
cJSON_Delete(root);
}
// 释放响应中的寄存器内存
modbus_free_response(&response);
}
else
{
// MODBUS解析失败原始数据直接上报
ESP_LOGW(TAG, "Failed to parse Modbus frame, publishing raw data");
int ret = mqtt_publish_message(CONFIG_MQTT_PUB_TOPIC, (char *)buf, len, 0, 0);
if (ret < 0)
{
ESP_LOGW(TAG, "Failed to publish RS485 data to MQTT topic %s", CONFIG_MQTT_PUB_TOPIC);
}
}
vTaskDelay(pdMS_TO_TICKS(50)); // 保持亮起50ms
status_led_blink_mode(2, 2); // 恢复心跳模式
}
else if (len == 0)
{
vTaskDelay(pdMS_TO_TICKS(50)); // 无数据短延时
}
else
{
// 接收错误,不记录日志避免刷屏
vTaskDelay(pdMS_TO_TICKS(200));
}
}
/* 永久任务通常不会到这里;若退出则释放 */
free(buf);
vTaskDelete(NULL);
}
/* 启动单个通道的接收任务
返回 pdPASS 或 pdFAIL */
BaseType_t start_rs485_rx_task_for_channel(int channel_num, UBaseType_t priority, uint32_t stack_size)
{
if (channel_num < 0 || channel_num >= NUM_CHANNELS)
{
ESP_LOGE(TAG, "start_rs485_rx_task_for_channel: invalid channel %d", channel_num);
return pdFAIL;
}
char tname[16];
snprintf(tname, sizeof(tname), "rs485_rx_%d", channel_num);
return xTaskCreate(rs485_rx_task, tname, stack_size, (void *)(intptr_t)channel_num, priority, NULL);
}
/* 可选:启动所有通道的接收任务(示例默认优先级与栈)*/
void start_all_rs485_rx_tasks(UBaseType_t priority, uint32_t stack_size)
{
for (int i = 0; i < NUM_CHANNELS; i++)
{
if (start_rs485_rx_task_for_channel(i, priority, stack_size) != pdPASS)
{
ESP_LOGW(TAG, "Failed to start RX task for channel %d", i);
}
else
{
ESP_LOGI(TAG, "Started RX task for channel %d", i);
}
}
}

View File

@@ -0,0 +1,66 @@
// RS-485-SP3485EEN.h
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_system.h"
#include "nvs_flash.h"
#include "driver/uart.h"
#include "freertos/queue.h"
#include "esp_log.h"
#include "driver/gpio.h"
typedef struct
{
uart_port_t uart_num;
gpio_num_t tx_pin;
gpio_num_t rx_pin;
gpio_num_t de_re_pin;
char name[20];
} rs485_channel_t;
/**
* @brief RS-485-SP3485EEN.h
* DE和RE引脚接在一起使用默认是下拉通过控制DE_RE引脚的高低电平来控制发送和接收
* DE_RE = HIGH 发送数据,接收器使能,低电平有效。低电平时使能接收器,高电平时禁用接收器
* DE_RE = LOW 接收数据,驱动器(发送器)使能,高电平有效。高电平时使能发送器,低电平时禁用发送器
*
* 所以默认是接收状态发送数据时需要先将DE_RE引脚拉高发送完数据后再拉低
*/
// 第一个模块的引脚配置
#define RS_485_SP3485EEN_UART_PORT (UART_NUM_0)
#define RS_485_SP3485EEN_RO_PIN (GPIO_NUM_41) // 接收器输出。将总线上的差分信号转换为TTL电平输出给 单片机RX
#define RS_485_SP3485EEN_DE_RE_PIN (GPIO_NUM_42) // 数据使能,接收器使能。控制发送器和接收器是否工作
#define RS_485_SP3485EEN_DI_PIN (GPIO_NUM_44) // 驱动器输入。单片机TX 发送的TTL电平信号转换为总线上的差分信号
// 第二个模块的引脚配置
#define RS_485_SP3485EEN_2_UART_PORT (UART_NUM_2)
#define RS_485_SP3485EEN_2_RO_PIN (GPIO_NUM_43) // 接收器输出。将总线上的差分信号转换为TTL电平输出给 单片机RX
#define RS_485_SP3485EEN_2_DE_RE_PIN (GPIO_NUM_2) // 数据使能,接收器使能。控制发送器和接收器是否工作
#define RS_485_SP3485EEN_2_DI_PIN (GPIO_NUM_1) // 驱动器输入。单片机TX 发送的TTL电平信号转换为总线上的差分信号
// 公共配置
#define BUF_SIZE 256
#define BAUD_RATE 115200
// 通道数量常量
#define RS485_NUM_CHANNELS 2
// ----------------------------
// 通道数组
// ----------------------------
extern rs485_channel_t rs485_channels[];
#define NUM_CHANNELS RS485_NUM_CHANNELS
void RS_485_init(uart_port_t uart_num, int tx_pin, int rx_pin, int de_re_pin);
void init_specific_rs485_channel(int channel_num); // 新增函数声明
void init_all_rs485_channels(void);
void rs485_send(uart_port_t uart_num, const uint8_t *data, size_t len);
int rs485_receive(uart_port_t uart_num, uint8_t *buffer, size_t buf_size, uint32_t timeout_ms);
BaseType_t start_rs485_rx_task_for_channel(int channel_num, UBaseType_t priority, uint32_t stack_size);

View File

@@ -0,0 +1,3 @@
idf_component_register(SRCS "SNTP_ESP.c"
INCLUDE_DIRS "include"
REQUIRES lwip)

View File

@@ -0,0 +1,133 @@
#include "SNTP_ESP.h"
#include "esp_log.h"
#include "esp_sntp.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include <sys/time.h>
#include <string.h>
#define TAG "SNTP_ESP"
static bool time_synced = false;
// 时间同步回调函数
static void sntp_sync_time_callback(struct timeval *tv)
{
time_t now = tv->tv_sec;
struct tm timeinfo;
localtime_r(&now, &timeinfo);
char time_str[64];
strftime(time_str, sizeof(time_str), "%Y-%m-%d %H:%M:%S", &timeinfo);
ESP_LOGI(TAG, "时间同步成功: %s", time_str);
time_synced = true;
}
esp_err_t sntp_esp_set_timezone(void)
{
// 设置中国标准时间(北京时间)
setenv("TZ", "CST-8", 1);
tzset();
ESP_LOGI(TAG, "时区设置为北京时间 (CST-8)");
return ESP_OK;
}
time_t sntp_esp_get_current_time(void)
{
// 使用POSIX函数获取时间
return time(NULL);
}
void sntp_esp_print_current_time(void)
{
time_t now = sntp_esp_get_current_time();
struct tm timeinfo;
char buffer[64];
localtime_r(&now, &timeinfo);
strftime(buffer, sizeof(buffer), "%Y-%m-%d %H:%M:%S %A", &timeinfo);
ESP_LOGI(TAG, "当前时间: %s", buffer);
}
esp_err_t sntp_esp_get_formatted_time(char *buffer, size_t size, const char *format)
{
if (buffer == NULL || format == NULL) {
return ESP_FAIL;
}
time_t now = sntp_esp_get_current_time();
struct tm timeinfo;
localtime_r(&now, &timeinfo);
strftime(buffer, size, format, &timeinfo);
return ESP_OK;
}
bool sntp_esp_is_synced(void)
{
time_t now = time(NULL);
// 检查时间是否已初始化从1970年到现在
return (now > 1000000000); // 2001年9月9日之后的任何时间都认为是有效时间
}
bool sntp_esp_wait_sync(uint32_t max_wait_ms)
{
ESP_LOGI(TAG, "等待时间同步(最长等待 %lu ms...", (unsigned long)max_wait_ms);
uint32_t start_time = xTaskGetTickCount();
uint32_t max_wait_ticks = pdMS_TO_TICKS(max_wait_ms);
while ((xTaskGetTickCount() - start_time) < max_wait_ticks) {
if (sntp_esp_is_synced()) {
ESP_LOGI(TAG, "时间同步完成");
return true;
}
vTaskDelay(pdMS_TO_TICKS(100)); // 每100毫秒检查一次
}
ESP_LOGW(TAG, "时间同步超时");
return false;
}
esp_err_t sntp_esp_init(void)
{
ESP_LOGI(TAG, "初始化SNTP服务");
// 重置同步标志
time_synced = false;
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 0, 0)
// 设置时间服务器(默认使用 pool.ntp.org
esp_sntp_setoperatingmode(SNTP_OPMODE_POLL);
// 添加 NTP 服务器
// esp_sntp_setservername(0, "pool.ntp.org"); // 默认服务器
esp_sntp_setservername(0, "cn.pool.ntp.org"); // 中国 NTP 服务器
esp_sntp_setservername(1, "ntp1.aliyun.com"); // 阿里云 NTP 服务器
esp_sntp_setservername(2, "ntp.tencent.com"); // 腾讯云 NTP 服务器
// 设置时间同步回调
esp_sntp_set_time_sync_notification_cb(sntp_sync_time_callback);
// 初始化 SNTP
esp_sntp_init();
#else
sntp_setoperatingmode(SNTP_OPMODE_POLL);
// esp_sntp_setservername(0, "pool.ntp.org"); // 默认服务器
sntp_setservername(0, "cn.pool.ntp.org"); // 中国 NTP 服务器
sntp_setservername(1, "ntp1.aliyun.com"); // 阿里云 NTP 服务器
sntp_setservername(2, "ntp.tencent.com"); // 腾讯云 NTP 服务器
sntp_set_time_sync_notification_cb(sntp_sync_time_callback);
sntp_init(); // 初始化 SNTP
#endif
sntp_esp_set_timezone(); // 设置时区
sntp_esp_print_current_time(); // 打印时间
ESP_LOGI(TAG, "SNTP服务初始化完成");
return ESP_OK;
}

View File

@@ -0,0 +1,72 @@
#ifndef SNTP_ESP_H
#define SNTP_ESP_H
#include <stdbool.h>
#include <time.h>
#include "esp_err.h"
/**
* @brief 初始化SNTP服务
*
* 初始化SNTP客户端配置NTP服务器和时区
* 必须在获得网络连接后调用
*
* @return ESP_OK 成功
* ESP_FAIL 失败
*/
esp_err_t sntp_esp_init(void);
/**
* @brief 设置时区
*
* 设置本地时区默认为北京时间CST-8
*
* @return ESP_OK 成功
*/
esp_err_t sntp_esp_set_timezone(void);
/**
* @brief 获取当前时间
*
* @return time_t 当前时间戳
*/
time_t sntp_esp_get_current_time(void);
/**
* @brief 打印当前时间
*
* 以格式化的方式打印当前时间到日志
*/
void sntp_esp_print_current_time(void);
/**
* @brief 获取格式化的时间字符串
*
* @param buffer 存储时间字符串的缓冲区
* @param size 缓冲区大小
* @param format 时间格式(如 "%Y-%m-%d %H:%M:%S"
* @return ESP_OK 成功
* ESP_FAIL 失败
*/
esp_err_t sntp_esp_get_formatted_time(char *buffer, size_t size, const char *format);
/**
* @brief 等待时间同步完成
*
* 等待SNTP时间同步完成
*
* @param max_wait_ms 最大等待时间(毫秒)
* @return true 同步成功
* false 超时
*/
bool sntp_esp_wait_sync(uint32_t max_wait_ms);
/**
* @brief 检查时间是否已同步
*
* @return true 已同步
* false 未同步
*/
bool sntp_esp_is_synced(void);
#endif // SNTP_ESP_H

View File

@@ -0,0 +1,4 @@
idf_component_register(SRCS "STATUS_LED.c"
INCLUDE_DIRS "include"
REQUIRES driver log
)

View File

@@ -0,0 +1,257 @@
#include <stdio.h>
#include "STATUS_LED.h"
static const char *TAG = "status_led";
// LED 引脚定义
#define STATUS_LED_1_PIN (GPIO_NUM_8)
#define STATUS_LED_2_PIN (GPIO_NUM_18)
// LED 控制结构体
typedef struct {
gpio_num_t pin;
led_state_t state;
int blink_period_ms;
bool current_level; // 实际输出电平
TaskHandle_t task_handle;
bool task_running;
} status_led_t;
static status_led_t led1 = {.pin = STATUS_LED_1_PIN, .state = LED_OFF, .task_running = false};
static status_led_t led2 = {.pin = STATUS_LED_2_PIN, .state = LED_OFF, .task_running = false};
/**
* @brief LED控制任务
*
* @param param 指向LED结构体的指针
*/
static void led_control_task(void *param)
{
status_led_t *led = (status_led_t *)param;
while(led->task_running) {
switch(led->state) {
case LED_OFF:
gpio_set_level(led->pin, 1); // 低电平点亮,所以高电平关闭
vTaskDelay(100 / portTICK_PERIOD_MS); // 延迟100ms后再次检查状态
break;
case LED_ON:
gpio_set_level(led->pin, 0); // 低电平点亮
vTaskDelay(100 / portTICK_PERIOD_MS); // 延迟100ms后再次检查状态
break;
case LED_BLINK_SLOW:
led->current_level = !led->current_level;
gpio_set_level(led->pin, !led->current_level); // 反转输出以适应低电平点亮
vTaskDelay(500 / portTICK_PERIOD_MS); // 慢闪周期500ms
break;
case LED_BLINK_FAST:
led->current_level = !led->current_level;
gpio_set_level(led->pin, !led->current_level); // 反转输出以适应低电平点亮
vTaskDelay(100 / portTICK_PERIOD_MS); // 快闪周期100ms
break;
case LED_HEARTBEAT:
// 心跳模式:快速亮两次,然后长灭
gpio_set_level(led->pin, 0); // 点亮
vTaskDelay(100 / portTICK_PERIOD_MS);
gpio_set_level(led->pin, 1); // 熄灭
vTaskDelay(100 / portTICK_PERIOD_MS);
gpio_set_level(led->pin, 0); // 点亮
vTaskDelay(100 / portTICK_PERIOD_MS);
gpio_set_level(led->pin, 1); // 熄灭
vTaskDelay(800 / portTICK_PERIOD_MS); // 间隔800ms
break;
default:
gpio_set_level(led->pin, 1); // 默认关闭
vTaskDelay(100 / portTICK_PERIOD_MS);
break;
}
}
// 任务结束前关闭LED高电平关闭
gpio_set_level(led->pin, 1);
vTaskDelete(NULL);
}
/**
* @brief 初始化GPIO引脚为输出模式
*
* @param led_pin LED使用的GPIO引脚
*/
static void init_gpio_pin(gpio_num_t led_pin)
{
gpio_config_t io_conf = {};
io_conf.intr_type = GPIO_INTR_DISABLE;
io_conf.mode = GPIO_MODE_OUTPUT;
io_conf.pin_bit_mask = (1ULL << led_pin);
io_conf.pull_down_en = 0;
io_conf.pull_up_en = 0;
gpio_config(&io_conf);
// 初始状态设为高电平LED熄灭适用于低电平点亮的LED
gpio_set_level(led_pin, 1);
}
/**
* @brief 初始化状态LED
*
* 配置两个LED引脚为输出模式并设置初始状态
*/
void status_led_init(void)
{
init_gpio_pin(STATUS_LED_1_PIN);
init_gpio_pin(STATUS_LED_2_PIN);
// 启动LED控制任务
led1.task_running = true;
xTaskCreate(led_control_task, "led1_control", 2048, &led1, 5, &led1.task_handle);
led2.task_running = true;
xTaskCreate(led_control_task, "led2_control", 2048, &led2, 5, &led2.task_handle);
ESP_LOGI(TAG, "Status LEDs initialized on pins GPIO%d and GPIO%d",
STATUS_LED_1_PIN, STATUS_LED_2_PIN);
}
/**
* @brief 控制指定LED的状态
*
* @param led_num LED编号 (1 或 2)
* @param state LED状态 (0=关闭, 1=开启)
*/
void status_led_set(uint8_t led_num, uint8_t state)
{
status_led_t *led = NULL;
if (led_num == 1) {
led = &led1;
} else if (led_num == 2) {
led = &led2;
} else {
ESP_LOGE(TAG, "Invalid LED number: %d", led_num);
return;
}
if (state == 1) {
led->state = LED_ON;
} else {
led->state = LED_OFF;
}
ESP_LOGD(TAG, "LED %d set to %s", led_num, state ? "ON" : "OFF");
}
/**
* @brief 切换指定LED的状态
*
* @param led_num LED编号 (1 或 2)
*/
void status_led_toggle(uint8_t led_num)
{
status_led_t *led = NULL;
if (led_num == 1) {
led = &led1;
} else if (led_num == 2) {
led = &led2;
} else {
ESP_LOGE(TAG, "Invalid LED number: %d", led_num);
return;
}
if (led->state == LED_ON) {
led->state = LED_OFF;
} else if (led->state == LED_OFF) {
led->state = LED_ON;
}
ESP_LOGD(TAG, "LED %d toggled", led_num);
}
/**
* @brief 设置LED为闪烁模式
*
* @param led_num LED编号 (1 或 2)
* @param mode 闪烁模式 (0=慢闪, 1=快闪, 2=心跳)
*/
void status_led_blink_mode(uint8_t led_num, uint8_t mode)
{
status_led_t *led = NULL;
if (led_num == 1) {
led = &led1;
} else if (led_num == 2) {
led = &led2;
} else {
ESP_LOGE(TAG, "Invalid LED number: %d", led_num);
return;
}
switch(mode) {
case 0: // 慢闪
led->state = LED_BLINK_SLOW;
break;
case 1: // 快闪
led->state = LED_BLINK_FAST;
break;
case 2: // 心跳
led->state = LED_HEARTBEAT;
break;
default:
ESP_LOGE(TAG, "Invalid blink mode: %d", mode);
return;
}
ESP_LOGD(TAG, "LED %d set to blink mode %d", led_num, mode);
}
/**
* @brief 销毁LED控制任务
*
* @param led_num LED编号 (1 或 2)
*/
void status_led_deinit(uint8_t led_num)
{
status_led_t *led = NULL;
if (led_num == 1) {
led = &led1;
} else if (led_num == 2) {
led = &led2;
} else {
ESP_LOGE(TAG, "Invalid LED number: %d", led_num);
return;
}
if (led->task_running) {
led->task_running = false;
if (led->task_handle) {
vTaskDelete(led->task_handle);
led->task_handle = NULL;
}
gpio_set_level(led->pin, 1); // 关闭LED高电平关闭
}
}
/**
* @brief 获取LED当前状态
*
* @param led_num LED编号 (1 或 2)
* @return 当前LED状态
*/
led_state_t status_led_get_state(uint8_t led_num)
{
if (led_num == 1) {
return led1.state;
} else if (led_num == 2) {
return led2.state;
} else {
ESP_LOGE(TAG, "Invalid LED number: %d", led_num);
return LED_OFF;
}
}

View File

@@ -0,0 +1,63 @@
#ifndef STATUS_LED_H
#define STATUS_LED_H
#include "driver/gpio.h"
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
// LED 状态枚举
typedef enum {
LED_OFF = 0,
LED_ON = 1,
LED_BLINK_SLOW,
LED_BLINK_FAST,
LED_HEARTBEAT
} led_state_t;
/**
* @brief 初始化状态LED
*
* 配置两个LED引脚为输出模式并启动控制任务
*/
void status_led_init(void);
/**
* @brief 控制指定LED的状态
*
* @param led_num LED编号 (1 或 2)
* @param state LED状态 (0=关闭, 1=开启)
*/
void status_led_set(uint8_t led_num, uint8_t state);
/**
* @brief 切换指定LED的状态
*
* @param led_num LED编号 (1 或 2)
*/
void status_led_toggle(uint8_t led_num);
/**
* @brief 设置LED为闪烁模式
*
* @param led_num LED编号 (1 或 2)
* @param mode 闪烁模式 (0=慢闪, 1=快闪, 2=心跳)
*/
void status_led_blink_mode(uint8_t led_num, uint8_t mode);
/**
* @brief 销毁LED控制任务
*
* @param led_num LED编号 (1 或 2)
*/
void status_led_deinit(uint8_t led_num);
/**
* @brief 获取LED当前状态
*
* @param led_num LED编号 (1 或 2)
* @return 当前LED状态
*/
led_state_t status_led_get_state(uint8_t led_num);
#endif // STATUS_LED_H

21
dependencies.lock Normal file
View File

@@ -0,0 +1,21 @@
dependencies:
espressif/mqtt:
component_hash: ffdad5659706b4dc14bc63f8eb73ef765efa015bf7e9adf71c813d52a2dc9342
dependencies:
- name: idf
require: private
version: '>=5.3'
source:
registry_url: https://components.espressif.com/
type: service
version: 1.0.0
idf:
source:
type: idf
version: 5.5.2
direct_dependencies:
- espressif/mqtt
- idf
manifest_hash: a05aed5660378334599ccf3fa66dcfc9fcf5deb3e651bd572aeb15a43840910d
target: esp32s3
version: 2.0.0

4
main/CMakeLists.txt Executable file
View File

@@ -0,0 +1,4 @@
idf_component_register(SRCS "main.c"
INCLUDE_DIRS "."
REQUIRES nvs_flash STATUS_LED RS-485-SP3485EEN ETH_CH390H MQTT_ESP SNTP_ESP
)

18
main/idf_component.yml Normal file
View File

@@ -0,0 +1,18 @@
## IDF Component Manager Manifest File
dependencies:
## Required IDF version
idf:
version: '>=4.1.0'
# # Put list of dependencies here
# # For components maintained by Espressif:
# component: "~1.0.0"
# # For 3rd party components:
# username/component: ">=1.0.0,<2.0.0"
# username2/component2:
# version: "~1.0.0"
# # For transient dependencies `public` flag can be set.
# # `public` flag doesn't have an effect dependencies of the `main` component.
# # All dependencies of `main` are public by default.
# public: true
espressif/mqtt: ^1.0.0

81
main/main.c Executable file
View File

@@ -0,0 +1,81 @@
#include "RS-485-SP3485EEN.h"
#include "ETH_CH390H.h"
#include "MQTT_ESP.h"
#include "STATUS_LED.h"
#include "MODBUS_ESP.h"
#include "SNTP_ESP.h"
#define TAG "main"
void app_main(void)
{
// 1. 初始化LED最先初始化让用户知道设备已上电
status_led_init();
status_led_blink_mode(1, 1); // LED1 快闪:系统启动中
status_led_blink_mode(2, 0); // LED2 慢闪:等待初始化
ESP_ERROR_CHECK(nvs_flash_init());
// 初始化以太网,这里包含了 esp_netif_init();和esp_event_loop_create_default();
eth_init();
// 初始化RS485
init_specific_rs485_channel(0); // 初始化通道0
start_rs485_rx_task_for_channel(0, 5, 4096); // 为通道0启动接收任务
// 等待网络连接建立
ESP_LOGI(TAG, "Waiting for network connection...");
esp_netif_t *eth_netif = esp_netif_get_handle_from_ifkey("ETH_DEF"); // 获取默认以太网接口
// 循环等待直到获得IP地址
while (true)
{
esp_netif_ip_info_t ip_info;
if (esp_netif_get_ip_info(eth_netif, &ip_info) == ESP_OK && ip_info.ip.addr != 0)
{
ESP_LOGI(TAG, "Network connected with IP: " IPSTR, IP2STR(&ip_info.ip));
break;
}
ESP_LOGI(TAG, "Waiting for IP address...");
vTaskDelay(pdMS_TO_TICKS(1000)); // 等待1秒后重试
}
// 初始化SNTP时间同步服务
ESP_LOGI(TAG, "Initializing SNTP time synchronization...");
sntp_esp_init();
// 等待时间同步完成最长等待10秒
if (sntp_esp_wait_sync(10000)) {
ESP_LOGI(TAG, "Time synchronization completed successfully");
} else {
ESP_LOGW(TAG, "Time synchronization timeout, using local time");
}
ESP_LOGI(TAG, "Starting MQTT client...");
// 启动MQTT客户端
mqtt_app_start();
// 网络连接成功后
status_led_set(1, 1); // LED1 常亮:网络正常
// MQTT 启动后
status_led_blink_mode(2, 2); // LED2 心跳:系统运行正常
// ============================
// 启动设备状态上报任务每10秒上报一次
// ============================
if (mqtt_start_device_status_task(10000) == pdPASS) {
ESP_LOGI(TAG, "Device status report task started");
} else {
ESP_LOGE(TAG, "Failed to start device status report task");
}
ESP_LOGI(TAG, "Waiting for MODBUS poll command via MQTT...");
for (;;)
{
vTaskDelay(1000 / portTICK_PERIOD_MS);
}
}